Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.
Several studies have described brain white matter abnormalities on magnetic resonance imaging (MRI) in children and adults with congenital adrenal hyperplasia (CAH), while the brain MRI findings of newborn infants with CAH have not been clarified. We report a newborn boy with CAH who presented brain white matter abnormality on MRI. He was diagnosed as having salt-wasting CAH with a high 17-OHP level at neonatal screening and was initially treated with hydrocortisone at 8 days of age. On day 11 after birth, he had a generalized tonic seizure. No evidence of serum electrolyte abnormalities was observed. Brain MRI revealed white matter abnormalities that consisted of bilateral small diffuse hyperintensities on T1-weighted images with slightly low intensity on T2-weighted images in the watershed area. Several factors associated with brain white matter abnormalities in adults with CAH, such as increasing age, hypertension, diabetes and corticosteroid replacement, were not applicable. Although the cause of the phenomenon in this case is unclear, brain white matter abnormality could be observed in newborn infants with CAH as well as in adult patients.
BackgroundIntestinal malrotation is an incomplete rotation of the intestine. Failure to rotate leads to abnormalities in intestinal positioning and attachment that leave obstructing bands across the duodenum and a narrow pedicle for the midgut loop, thus making it susceptible to volvulus. One of the important differential diagnoses for malrotation is an allergy to cow’s milk. Several studies have described infants with surgical gastrointestinal diseases and cow’s milk allergy. However, to our knowledge, no study has reported infants with intestinal malrotation who have been symptomatic before surgery was performed and have been examined by allergen-specific lymphocyte stimulation test and food challenge tests with long-term follow-up.Case presentationThe patient was a Japanese male born at 39 weeks of gestation. He was breast-fed and received commercial cow’s milk supplementation starting the day of birth and was admitted to our hospital at 6 days of age due to bilious vomiting. Plain abdominal radiography showed a paucity of gas in the distal bowel. Because we demonstrated malpositioning of the intestine by barium enema, we repositioned the bowel in a normal position by laparotomy. The patient was re-started on only breast milk 2 days post surgery because we suspected the presence of a cow’s milk allergy, and the results of an allergen-specific lymphocyte stimulation test showed a marked increase in lymphocyte response to kappa-casein. At 5 months of age, the patient was subjected to a cow’s milk challenge test. After the patient began feeding on cow’s milk, he had no symptoms and his laboratory investigations showed no abnormality. In addition, because the patient showed good weight gain and no symptoms with increased cow’s milk intake after discharge, we concluded that the present case was not the result of a cow’s milk allergy. At 1 year, the patient showed favorable growth and development, and serum allergy investigations revealed no reaction to cow’s milk.ConclusionWhen physicians encounter infants with surgical gastrointestinal disease, including intestinal malrotation, they should consider cow’s milk allergy as a differential diagnosis or complication and should utilize food challenge tests for a definitive diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.