Moyamoya disease (MMD) shows progressive cerebral angiopathy characterized by bilateral internal carotid artery stenosis and abnormal collateral vessels. Although B15% of MMD cases are familial, the MMD gene(s) remain unknown. A genome-wide association study of 785 720 single-nucleotide polymorphisms (SNPs) was performed, comparing 72 Japanese MMD patients with 45 Japanese controls and resulting in a strong association of chromosome 17q25-ter with MMD risk. This result was further confirmed by a locus-specific association study using 335 SNPs in the 17q25-ter region. A single haplotype consisting of seven SNPs at the RNF213 locus was tightly associated with MMD (P¼5.3Â10 À10 ). RNF213 encodes a really interesting new gene finger protein with an AAA ATPase domain and is abundantly expressed in spleen and leukocytes. An RNA in situ hybridization analysis of mouse tissues indicated that mature lymphocytes express higher levels of Rnf213 mRNA than their immature counterparts. Mutational analysis of RNF213 revealed a founder mutation, p.R4859K, in 95% of MMD families, 73% of non-familial MMD cases and 1.4% of controls; this mutation greatly increases the risk of MMD (P¼1.2Â10 À43 , odds ratio¼190.8, 95% confidence interval¼71.7-507.9). Three additional missense mutations were identified in the p.R4859K-negative patients. These results indicate that RNF213 is the first identified susceptibility gene for MMD.
Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt−/− mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.
Summary Objective GABRA1 mutations have been identified in patients with familial juvenile myoclonic epilepsy, sporadic childhood absence epilepsy, and idiopathic familial generalized epilepsy. In addition, de novo GABRA1 mutations were recently reported in a patient with infantile spasms and four patients with Dravet syndrome. Those reports suggest that GABRA1 mutations are associated with infantile epilepsy including early onset epileptic encephalopathies. In this study, we searched for GABRA1 mutations in patients with infantile epilepsy to investigate the phenotypic spectrum of GABRA1 mutations. Methods In total, 526 and 145 patients with infantile epilepsy were analyzed by whole‐exome sequencing and GABRA1‐targeted resequencing, respectively. Results We identified five de novo missense GABRA1 mutations in six unrelated patients. A p.R112Q mutation in the long extracellular N‐terminus was identified in a patient with infantile epilepsy; p.P260L, p.M263T, and p.M263I in transmembrane spanning domain 1 (TM1) were identified in three unrelated patients with West syndrome and a patient with Ohtahara syndrome, respectively; and p.V287L in TM2 was identified in a patient with unclassified early onset epileptic encephalopathy. Four of these mutations have not been observed previously. Significance Our study suggests that de novo GABRA1 mutations can cause early onset epileptic encephalopathies, including Ohtahara syndrome and West syndrome.
No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.