This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integralfield spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto Observatory. Three different spectral setups are available: i) a low-resolution V500 setup covering the wavelength range 3745-7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ∼1.5 million independent spectra.
Dedicated photometric and spectroscopic surveys have provided unambiguous evidence for a strong stellar mass-size evolution of galaxies within the last 10 Gyr. The likely progenitors of today's most massive galaxies are remarkably small, disky, passive and have already assembled much of their stellar mass at redshift z=2. An indepth analysis of these objects, however, is currently not feasible due to the lack of high-quality, spatially-resolved photometric and spectroscopic data. In this paper, we present a sample of nearby compact elliptical galaxies (CEGs), which bear resemblance to the massive and quiescent galaxy population at earlier times. Hubble Space Telescope (HST ) and wide-field integral field unit (IFU) data have been obtained, and are used to constrain orbit-based dynamical models and stellar population synthesis (SPS) fits, to unravel their structural and dynamical properties. We first show that our galaxies are outliers in the present-day stellar mass-size relation. They are, however, consistent with the mass-size relation of compact, massive and quiescent galaxies at redshift z=2. The compact sizes of our nearby galaxies imply high central stellar mass surface densities, which are also in agreement with the massive galaxy population at higher redshift, hinting at strong dissipational processes during their formation. Corroborating evidence for a largely passive evolution within the last 10 Gyr is provided by their orbital distribution as well as their stellar populations, which are difficult to reconcile with a very active (major) merging history. This all supports that we can use nearby CEGs as local analogues of the high-redshift, massive and quiescent galaxy population, thus providing additional constraints for models of galaxy formation and evolution.
We present a dynamical analysis to infer the structural parameters and properties of the two nearby, compact, high velocity dispersion galaxies MRK 1216 and NGC 1277. Combining deep Hubble Space Telescope imaging, wide-field integral field unit stellar kinematics, and complementary long-slit spectroscopic data out to three effective radii, we construct orbit-based models to constrain their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole mass of log(M • /M ) = 10.1 +0.1 −0.2 for NGC 1277 and an upper limit of log(M • /M ) = 10.0 for MRK 1216, within 99.7 per cent (3σ) confidence. The stellar mass-to-light ratios span a range of Υ V = 6.5 +1.5 −1.5 in NGC 1277 and Υ H = 1.8 +0.5 −0.8 in MRK 1216 and are in good agreement with single stellar population models of a single power-law Salpeter initial mass function. Even though our models do not place strong constraints on the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK 1216, with a dark matter contribution of 22 +30 −20 per cent to the total mass budget within one effective radius. NGC 1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital structures of both galaxies, which are rotationally supported and consistent with photometric multi-Sérsic decompositions, indicating that these compact objects do not host classical, non-rotating bulges formed during recent (z 2) dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC 1277 are anisotropic, with a global anisotropy parameter δ of 0.33 and 0.58, respectively. While MRK 1216 follows the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional plane of the order β z ∼ δ, NGC 1277 is highly tangentially anisotropic and seems to belong kinematically to a distinct class of objects.
The nearby lenticular galaxy NGC 1277 is thought to host one of the largest black holes known, however the black hole mass measurement is based on low spatial resolution spectroscopy. In this paper, we present Gemini Near-infrared Integral Field Spectrometer observations assisted by adaptive optics. We map out the galaxy's stellar kinematics within ∼440 pc of the nucleus with an angular resolution that allows us to probe well within the region where the potential from the black hole dominates. We find that the stellar velocity dispersion rises dramatically, reaching ∼550 km s −1 at the center. Through orbit-based, stellar-dynamical models we obtain a black hole mass of (4.9 ± 1.6) × 10 9 M ⊙ (1σ uncertainties). Although the black hole mass measurement is smaller by a factor of ∼3 compared to previous claims based on large-scale kinematics, NGC 1277 does indeed contain one of the most massive black holes detected to date, and the black hole mass is an order of magnitude larger than expectations from the empirical relation between black hole mass and galaxy luminosity. Given the galaxy's similarities to the higher redshift (z∼2) massive quiescent galaxies, NGC 1277 could be a relic, passively evolving since that period. A population of local analogs to the higher redshift quiescent galaxies that also contain over-massive black holes may suggest that black hole growth precedes that of the host galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.