SummaryThe malaria parasite Plasmodium falciparum induces a sixfold increase in the phospholipid content of infected erythrocytes during its intraerythrocytic growth. We have characterized the lipid environments in parasitized erythrocyte using the hydrophobic probe, Nile Red. Spectral imaging with a confocal microscope revealed heterogeneous lipid environments in parasite-infected erythrocytes. An insight into the nature of these environments was gained by comparing these spectra with those of triacylglycerol/ phospholipid emulsions and phospholipid membranes. Using this approach, we identified a population of intensely stained particles of a few hundred nanometers in size that are closely associated with the digestive vacuole of the parasite and appear to be composed of neutral lipids. Electron microscopy and isolation of food vacuoles confirmed the size of these particles and their intimate association respectively. Lipid analysis suggests that these neutral lipid bodies are composed of di-and triacylgycerols and may represent storage organelles for lipid intermediates that are generated during digestion of phospholipids in the food vacuole. Mono-, di-and triacylglycerol suspensions promote b b b b -haematin formation, suggesting that these neutral lipid bodies, or their precursors, may also be involved in haem detoxification. We also characterized other compartments of the infected erythrocyte that were stained less intensely with the Nile Red probe. Both the erythrocyte membrane and the parasite membrane network exhibit red shifts compared with the neutral lipid bodies that are consistent with cholesterol-rich and cholesterol-poor membranes respectively. Ratiometric imaging revealed more subtle variations in the lipid environments within the parasite membrane network.
The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the erythrocytes of its human host. In the mature stages of intraerythrocytic growth, the parasite undertakes extensive remodeling of its adopted cellular home by exporting proteins beyond the confines of its own plasma membrane. To examine the signals involved in export of parasite proteins, we have prepared transfected parasites expressing a chimeric protein comprising the N-terminal region of the Plasmodium falciparum exported protein-1 appended to green fluorescent protein. The majority of the population of the chimeric protein appears to be correctly processed and trafficked to the parasitophorous vacuole, indicating that this is the default destination for protein secretion. Some of the protein is redirected to the parasite food vacuole and further degraded. Photobleaching studies reveal that the parasitophorous vacuole contains subcompartments that are only partially interconnected. Dual labeling with the lipid probe, BODIPY-TR-ceramide, reveals the presence of membrane-bound extensions that can bleb from the parasitophorous vacuole to produce double membranebound compartments. We also observed regions and extensions of the parasitophorous vacuole, where there is segregation of the lumenal chimera from the lipid components. These regions may represent sites for the sorting of proteins destined for the trafficking to sites beyond the parasitophorous vacuole membrane.Due to the compartmentalization of eukaryotic cells, a sophisticated protein trafficking system is an integral requirement for homeostasis and growth. Proteins destined for compartments other than the cytoplasm are synthesized with intrinsic signals that determine their transport within the cell. Small peptide motifs often form the necessary targeting determinants (1). For example, an N-terminal hydrophobic sequence forms part of the typical secretory signal that directs proteins across the endoplasmic reticulum (ER) 1 membrane (2-5). Similarly, N-terminal amphipathic and bipartite sequences target proteins to the chloroplast and mitochondria (6 -8).The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside mature human erythrocytes. The parasite invades this quiescent host cell and develops within a parasitophorous vacuole (PV). An unusual and highly specialized secretory system enables the malaria parasite to survive within a cell that lacks its own machinery for protein synthesis and trafficking. Indeed, the parasite targets proteins, not only to compartments within its own confines, but to the PV, in which it resides, as well as the PV membrane (PVM), the erythrocyte cytoplasm, and host cell membrane (9 -11).Efforts have been made to understand the trafficking signals that target parasite proteins to different compartments within and outside the parasite. Proteins destined for the ER, the parasite plasma membrane (PPM), the PV, or the PVM appear to have a "classical" hydrophobic N-terminal signal sequence (i.e. a stretch of 10 -15 hydrop...
Plasmodium falciparum develops within the mature RBCs (red blood cells) of its human host in a PV (parasitophorous vacuole) that separates the host cell cytoplasm from the parasite surface. The pore-forming toxin, SLO (streptolysin O), binds to cholesterol-containing membranes and can be used to selectively permeabilize the host cell membrane while leaving the PV membrane intact. We found that in mixtures of infected and uninfected RBCs, SLO preferentially lyses uninfected RBCs rather than infected RBCs, presumably because of differences in cholesterol content of the limiting membrane. This provides a means of generating pure preparations of viable ring stage infected RBCs. As an alternative permeabilizing agent we have characterized EqtII (equinatoxin II), a eukaryotic pore-forming toxin that binds preferentially to sphingomyelin-containing membranes. EqtII lyses the limiting membrane of infected and uninfected RBCs with similar efficiency but does not disrupt the PV membrane. It generates pores of up to 100 nm, which allow entry of antibodies for immunofluorescence and immunogold labelling. The present study provides novel tools for the analysis of this important human pathogen and highlights differences between Plasmodium-infected and uninfected RBCs.
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl--cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.
The virulence of the malaria parasite Plasmodium falciparum is related to its ability to express a family of adhesive proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) at the infected red blood cell surface. The mechanism for the transport and delivery of these adhesins to the erythrocyte membrane is only poorly understood. In this work, we have used specific immune reagents in a flow cytometric assay to monitor the effects of serum components on the surface presentation of PfEMP1. We show that efficient presentation of the A4 and VAR2CSA variants of PfEMP1 is dependent on the presence of serum in the bathing medium during parasite maturation. Lipid-loaded albumin supports parasite growth but allows much less efficient presentation of PfEMP1 at the red blood cell surface. Analysis of the serum components reveals that lipoproteins, especially those of the low-density lipoprotein fraction, promote PfEMP1 presentation. Cytoadhesion of infected erythrocytes to the host cell receptors CD36 and ICAM-1 is also decreased in infected erythrocytes cultured in the absence of serum. The defect appears to be in the transfer of PfEMP1 from parasite-derived structures known as the Maurer's clefts to the erythrocyte membrane or in surface conformation rather than a down-regulation or switching of particular PfEMP1 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.