Glaucoma, a progressive optic neuropathy due to retinal ganglion cell (RGC) degeneration, is one of the leading causes of irreversible blindness. Although glaucoma is often associated with elevated intraocular pressure (IOP), IOP elevation is not detected in a significant subset of glaucomas, such as normal tension glaucoma (NTG). Moreover, in some glaucoma patients, significant IOP reduction does not prevent progression of the disease. Thus, understanding IOP-independent mechanisms of RGC loss is important. Here, we show that mice deficient in the glutamate transporters GLAST or EAAC1 demonstrate spontaneous RGC and optic nerve degeneration without elevated IOP. In GLAST-deficient mice, the glutathione level in Müller glia was decreased; administration of glutamate receptor blocker prevented RGC loss. In EAAC1-deficient mice, RGCs were more vulnerable to oxidative stress. These findings suggest that glutamate transporters are necessary both to prevent excitotoxic retinal damage and to synthesize glutathione, a major cellular antioxidant and tripeptide of glutamate, cysteine, and glycine. We believe these mice are the first animal models of NTG that offer a powerful system for investigating mechanisms of neurodegeneration in NTG and developing therapies directed at IOP-independent mechanisms of RGC loss.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in oxidative stress-induced apoptosis. In the present study, we used ASK1 knockout (KO) mice to examine the possibility that ASK1 is involved in the neural cell apoptosis that occurs during retinal development and ischemic injury. ASK1 was expressed in retinal neurons, including retinal ganglion cells (RGCs), but retinal structure and extent of cell death during development were normal in ASK1 KO mice. On the other hand, the strain was less susceptible to ischemic injury, and the number of surviving retinal neurons was significantly increased compared with that in wild-type mice. Interestingly, ischemia-induced phosphorylation of p38 mitogen-activated protein kinase (p38), which mediates RGC apoptosis, was almost completely suppressed in ASK1 KO mice. In such retinas, the numbers of cleaved caspase-3-and TUNEL-positive neurons were apparently decreased compared with those in wild-type mice. Furthermore, cultured RGCs from ASK1 KO mice were resistant to H 2 O 2 -induced apoptosis. Our findings suggest that ASK1 is involved in the neural cell apoptosis after various kinds of oxidative stress. Thus, inhibition of the ASK1-p38 pathway could be useful for the treatment of neurodegenerative diseases including glaucoma. (Am J
This minireview presents a summary of information available on the variety and binding properties of extrinsic proteins that form the oxygen-evolving complex of photosystem II (PSII) of cyanobacteria, red alga, diatom, green alga, euglena, and higher plants. In addition, the structure and function of extrinsic PsbO, PsbV, and PsbU proteins are summarized based on the crystal structure of thermophilic cyanobacterial PSII together with biochemical and genetic studies from various organisms.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 micromol O(2)/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 micromol O(2)/mg Chl/h in the absence and presence of CaCl(2), respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.
Leukocyte cell-derived chemotaxin 2 (LECT2) was originally identified for its possible chemotactic activity against human neutrophils in vitro. It is a 16-kDa protein that is preferentially expressed in the liver. Its homologues have been widely identified in many vertebrates. Current evidence suggests that LECT2 may be a multifunctional protein like cytokines. However, the function of LECT2 in vivo remains unclear. To elucidate the role of this protein in vivo, we have generated LECT2-deficient (LECT2−/−) mice. We found that the proportion of NKT cells in the liver increased significantly in LECT2−/− mice, although those of conventional T cells, NK cells, and other cell types were comparable with those in wild-type mice. Consistent with increased hepatic NKT cell number, the production of IL-4 and IFN-γ was augmented in LECT2−/− mice upon stimulation with α-galactosylceramide, which specifically activates Vα14 NKT cells. In addition, NKT cell-mediated cytotoxic activity against syngeneic thymocytes increased in hepatic mononuclear cells obtained from LECT2−/− mice in vitro. Interestingly, the hepatic injury was exacerbated in LECT2−/− mice upon treatment with Con A, possibly because of the significantly higher expression of IL-4 and Fas ligand. These results suggest that LECT2 might regulate the homeostasis of NKT cells in the liver and might be involved in the pathogenesis of hepatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.