Photosynthetic water oxidation performed at the MnCaO cluster in photosystem II plays a crucial role in energy production as electron and proton sources necessary for CO fixation. Molecular oxygen, a byproduct, is a source of the oxygenic atmosphere that sustains life on earth. However, the molecular mechanism of water oxidation is not yet well-understood. In the reaction cycle of intermediates called S states, the S → S transition is particularly important; it consists of multiple processes of electron transfer, proton release, and water insertion, and generates an intermediate leading to O-O bond formation. In this study, we monitored the reaction process during the S → S transition using time-resolved infrared spectroscopy to clarify its molecular mechanism. A change in the hydrogen-bond interaction of the oxidized Y radical, an immediate electron acceptor of the MnCaO cluster, was clearly observed as a ∼100 μs phase before the electron-transfer phase with a time constant of ∼350 μs. This observation provides strong experimental evidence that rearrangement of the hydrogen-bond network around Y, possibly due to the movement of a water molecule located near Y to the Mn site, takes place before the electron transfer. The electron transfer was coupled with proton release, as revealed by a relatively high deuterium kinetic isotope effect of 1.9. This proton release, which decreases the redox potential of the MnCaO cluster to facilitate electron transfer to Y, was proposed to determine, as a rate-limiting step, the relatively slow electron-transfer rate of the S → S transition.
The redox-active tyrosine YZ (D1-Tyr161) in photosystem II (PSII) functions as an immediate electron acceptor of the Mn4Ca cluster, which is the catalytic center of photosynthetic water oxidation. YZ is also located in the hydrogen bond network that connects the Mn4Ca cluster to the lumen and hence is possibly related to the proton transfer process during water oxidation. To understand the role of YZ in the water oxidation mechanism, we have studied the hydrogen bonding interactions of YZ and its photooxidized neutral radical YZ(•) together with the interaction of the coupled His residue, D1-His190, using light-induced Fourier transform infrared (FTIR) difference spectroscopy. The YZ(•)-minus-YZ FTIR difference spectrum of Mn-depleted PSII core complexes exhibited a broad positive feature around 2800 cm(-1), which was absent in the corresponding spectrum of another redox-active tyrosine YD (D2-Tyr160). Analyses by (15)N and H/D substitutions, examination of the pH dependence, and density functional theory and quantum mechanics/molecular mechanics (QM/MM) calculations showed that this band arises from the N-H stretching vibration of the protonated cation of D1-His190 forming a charge-assisted strong hydrogen bond with YZ(•). This result provides strong evidence that the proton released from YZ upon its oxidation is trapped in D1-His190 and a positive charge remains on this His. The broad feature of the ~2800 cm(-1) band reflects a large proton polarizability in the hydrogen bond between YZ(•) and HisH(+). QM/MM calculations further showed that upon YZ oxidation the hydrogen bond network is rearranged and one water molecule moves toward D1-His190. From these data, a novel proton transfer mechanism via YZ(•)-HisH(+) is proposed, in which hopping of the polarizable proton of HisH(+) to this water triggers the transfer of the proton from substrate water to the luminal side. This proton transfer mechanism could be functional in the S2 → S3 transition, which requires proton release before electron transfer because of an excess positive charge on the Mn4Ca cluster.
Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.
Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most redshifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under farred light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.