In this work, we report an obvious low field-induced magnetic confinement effect on the diffusivity in binary metallic melts under a weak magnetic field. A quantitative description of this nontrivial dynamic behavior is given by a physical analytical model based on the Hall effect, which is in agreement with our experimental results. Meanwhile, a quadratic B dependence of the dynamic viscosity obtained in the same confined environment is observed. Our results show that one can effectively control the atomic diffusion process of metallic melts by the application of magnetic field. Meanwhile, this magnetic confinement effect at atomic scale should provide an important new ingredient to deeply understand the condensed matter physics under the external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.