An actinomycete, Nocardia sp. strain 835A, grows well on unvulcanized natural rubber and synthetic isoprene rubber, but not on other types of synthetic rubber. Not only unvulcanized but also various kinds of vulcanized natural rubber products were more or less utilized by the organism as the sole source of carbon and energy. The thin film from a latex glove was rapidly degraded, and the weight loss reached 75% after a 2-week cultivation period. Oligomers with molecular weights from 104 to 103 were accumulated during microbial growth on the latex glove. The partially purified oligomers were examined by infrared and 1H nuclear magnetic resonance and 13C nuclear magnetic resonance spectroscopy, and the spectra were those expected of cis-1, 4-polyisoprene with the structure, OHC-CH2-[-CH2-C(-CH3)=CCH-CH2-]n-CH2-C(==O-CH3, with average values of n of about 114 and 19 for the two oligomers.
Rubber-degrading activity was found in the extracellular culture medium of Xanthomonas sp. strain 35Y which was grown on natural rubber latex. Natural rubber in the latex state was degraded by the crude enzyme, and two fractions were separately observed by gel permeation chromatography of the reaction products. One fraction was of higher molecular weight (HMW) with a very wide MW distribution from 103 to 105, and the other fraction was of lower molecular weight (LMW) with a MW of a few hundred. 'H-nuclear magnetic resonance spectra of the partially purified fractions were those expected of cis-1,4-polyisoprene mixtures with the structure OHC-CH2-(-CH2-C(-CH3)=CH-CH2-)n-CH2-C(=O)-CH3, with average values of n of about 113 and 2 for HMW and LMW fractions, respectively. The LMW fraction consisted mostly of one component in gas-liquid chromatography as well as in gel permeation chromatography, and the main component was identified as 12-oxo-4,8-dimethyl trideca-4,8-diene-1-al (acetonyl diprenyl acetoaldehyde, ALP2AI) by 13Cnuclear magnetic resonance and gas chromatography-mass spectra. Not only the latices of natural and synthetic isoprene rubber, but also some kinds of low-MW polyisoprene compounds of cis-1,4 type, were degraded by the crude enzyme. The rubber-degrading reaction was found to be at least partly oxygenase catalyzed from the incorporation of 180 into ALP2At under an 1802 atmosphere.
The growth of a Nocardia sp. occurs essentially on the insoluble rubber substrate and the cells are tightly bound to the rubber in the initial stage of the growth in spite of vigorous stirring of the cultures. The colonization of rubber pieces was followed by staining with Schiff reagent, and it was revealed that not only the thickness of rubber pieces, but also their length and width greatly influenced microbial colonization and degradation of natural rubber products. Among rubber pieces of various shapes, long strips were most rapidly covered by many microbial colonies and experienced the highest rate of rubber degradation. The rate of degradation (expressed by % weight loss) of the long strips of rubber was a linear function of surface area per unit weight of rubber. Thin and wide films of rubber were also rapidly colonized and degraded, while the colonization and degradation of short and narrow pieces were substantially slower and less extensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.