Heart rate variability (HRV) is the heart beat-to-beat variation under control of the cardiovascular function of animals. Under stressed conditions, cardiac activity is generally regulated with an upregulated sympathetic tone and withdrawal of vagal tone; thus, HRV monitoring can be a non-invasive technique to assess stress level in animals especially related to animal welfare. Among several stress-induced factors, heat stress is one of the most serious causes of physiological damage to animals. The aim of this study was to assess the effects of heat stress on HRV in small ruminants under free-moving conditions. In three experimental periods (June, August, and October), inter-beat intervals in sheep and goats (three for each) in two consecutive days were measured. HRV parameters were calculated from the inter-beat interval data by three types of analyses: time domain, frequency domain, and non-linear analyses. The temperature–humidity index (THI) was used as an indicator of heat stress, and vectorial dynamic body acceleration (VeDBA) was calculated to quantify the physical activity of the animals tested. First, we investigated correlations of THI and VeDBA with HRV parameters; subsequently, THI was divided into five categories according to the values obtained (≤ 65, 65–70, 70–75, 75–80, and >80), and the effects of the THI categories on HRV parameters were investigated with and without correcting for the effects of physical activity based on the VeDBA. The results indicated that HRV significantly decreased with increasing THI and VeDBA. For non-linear HRV parameters that were corrected for the effects of physical activity, it was suggested that there would be a threshold of THI around 80 that strongly affected HRV; high heat stress can affect the autonomic balance of animals non-linearly by inducing the sympathetic nervous system. In conclusion, to assess psychophysiological conditions of unrestrained animals by HRV analysis, the confounding effect of physical activity on HRV should be minimized for a more precise interpretation of the results.
We aimed to evaluate the response to definitive radiotherapy (RT) for cervical cancer based on histological subtypes and investigate prognostic factors in adenocarcinoma (AC). Of the 396 patients treated with definitive RT between January, 2010 and July, 2020, 327 patients met the inclusion criteria, including 275 with squamous cell carcinoma (SCC) and 52 with AC restaged based on the 2018 International Federation of Gynecology and Obstetrics staging system. Patient characteristics, response to RT, and prognoses of SCC and AC were evaluated. The complete response (CR) rates were 92.4% and 53.8% for SCC and AC, respectively (p < 0.05). Three-year overall survival and progression-free survival (PFS) rates of SCC were significantly higher than those of AC (88.6% vs. 74.1%, p < 0.05 and 76.3% vs. 59.3%, p < 0.05, respectively). Among the AC population, univariate and multivariate analyses were performed to examine prognostic factors associated with non-complete response (CR). In the multivariate analysis, gastric-type adenocarcinoma (GAS) was associated with non-CR in AC (adjusted odds ratio, 12.2; 95% confidence interval 1.0–145.6; p < 0.05). The 3-year PFS rate in patients with GAS was significantly lower than that in patients with other histological types of AC (44.4% vs. 66.7%, p < 0.05). Definitive RT for cervical cancer was significantly less effective for AC than for SCC. GAS was the only independent prognostic factor associated with non-CR in AC.
We conducted a life cycle assessment (LCA) to compare environmental impacts of conventional (CNV) broiler chicken production in Japan with those of three mitigation options: a low-protein diet supplemented with more crystalline amino acids (LP), incineration of broiler litter (IC), and their combination (LP + IC). Feed production, feed transport, broiler housing, and manure management were included in the LCA, with 1 kg of liveweight of broiler chicken as the functional unit. The CNV environmental impacts were: climate change, 1.86 kg CO2e; acidification, 52.6 g SO2e; eutrophication, 18.3 g PO4e; energy consumption, 18.8 MJ. Since broiler manure management has a lower N2O emission factor, the LP diet’s effects on greenhouse gas (GHG) emissions were limited. Because a large amount of ammonia is emitted from broiler-litter composting and the LP diet reduced nitrogen excretion and consequent NH3 emission, the LP showed lower acidification and eutrophication potentials than CNV. The IC system reduced fuel consumption by utilizing the generated heat for broiler-house heating and thus had lower GHG emissions and energy consumption; it reduced ammonia emission from the manure-management process by incineration and thus had lower acidification and eutrophication potentials even when including NOX generation by litter incineration. The LP + IC system had lower environmental impacts than CNV: for climate change (by 16%), acidification (48%), eutrophication (24%), and energy consumption (15%). Mitigation opportunities for broiler chickens remain, and broiler production systems with mitigation options help produce chickens more sustainably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.