A noncollinear optical parametric amplifier is presented that generates transform-limited sub-10-fs pulses that are tunable in both the visible and the near infrared (NIR). The pulse-front-matched pump geometry realizes tilt-free signal amplification, and pulses as short as 6.1 fs can be obtained from 550 to 700 nm. The large angular dispersion of the idler specific to the group-velocity-matching interaction is effectively eliminated by a grating-telescope compensator, and 9-fs NIR pulses are also successfully obtained from 900 to 1300 nm. This is believed to be the first tunable sub-10-fs light source.
Sub-5-fs pulses are generated in the visible region. A pulse-front-matched noncollinear optical parametric amplifier is operated with the full bandwidth by precompression of the seeded continuum with a customized ultrabroadband chirped mirror (UBCM) pair. The signal is compressed down to a nearly transform-limited 4.7±0.1 fs duration by a prism pair and another UBCM pair with a 5-μJ pulse energy.
Coherent addition of fiber lasers coupled with an intracavity fiber coupler is reported. Almost a single output is obtained from one of the fiber ports, which one can switch simply by unbalancing the losses in the ports. We show that the constructive supermodes, each of which has a single output in a different port, build up automatically because of the dense longitudinal-mode, length-unbalanced laser array with unbalanced port loss. High addition efficiencies of 93.6% for two fiber lasers and 95.6% for four fiber lasers have been obtained.
A solid-state laser material based on highly transparent cubic Nd3+:Lu2O3 ceramic was developed using nanocrystalline technology and a nonpress vacuum sintering method. Spectroscopic properties of this ceramic laser material were investigated. At room temperature under single-laser diode pumping, efficient continuous wave laser oscillation was demonstrated at two wavelengths of the 4F3/2→4I11/2 channel. The potential application of such a laser material was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.