Since the success of an invasive species depends not only upon its intrinsic traits but also on particular characteristics of the recipient habitat, assessing the performance of an invader across habitats provides a more realistic analysis of risk. Such an analysis will not only provide insights into the traits related to invasiveness, but also the habitat characteristics that underpin vulnerability to invasion that, taken together, will facilitate the selection of management strategies to mitigate the invader's effect. In the present study, we considered the Mediterranean basin islands as an excellent study region to test how the same invasive species perform in different habitats within a single island, and to scale up differences among islands with similar climate. We tested how the performance of three widespread plant invaders with clonal growth but contrasting life-history traits, a deciduous tree Ailanthus altissima, a succulent subshrub Carpobrotus spp., and an annual geophyte Oxalis pes-caprae, varied depending upon the species identity, habitat, and invaded island. The environmental parameters considered were habitat type, elevation, species diversity in the invaded plot, and several soil traits (% C, % N, C/N, pH, and relative humidity). The study documents that the performance of these three important and widespread plant invaders is dependent mainly on species identity, and less upon the invaded island's general features. Likewise, differences in performance among habitats were only significant in the case of Ailanthus, whereas Carpobrotus and Oxalis appear to perform equally well in different environments. Ailanthus thus appears to have a broader spectrum of invasiveness, being able to invade a larger number of habitat types. On the contrary, Carpobrotus spp. have not yet invaded habitats different from those where the species have been originally introduced and where they are still commonly spread by humans. Oxalis distribution is mainly related to agricultural activities and disturbed sites, and the total area infested by this geophyte may be more reflection of the extent of suitable habitats than of invasiveness or ecological impact. Our results confirm the potential for these species to significantly alter the functioning of ecosystems in the Mediterranean islands and highlight the risk to other islands not yet invaded.
A detailed study of the variation in productivity across a diversity gradient in an experimental Mediterranean grassland examines the effects of a dominant perennial grass species upon the overall diversity–productivity relationship. The experiment took place at the Greek site of the European‐wide BIODEPTH programme. The experimental design is characterized by the use of a number of communities containing annuals and perennials within the total set of manipulated plots. The main results are: 1) a log‐linear relationship between diversity and productivity exists in Mediterranean grasslands synthesized by annuals only, 2) in mixed communities where multiple growth forms coexist, the performance of a dominant or keystone species may reverse or hide the diversity–productivity pattern of a functional or growth form group of species taken separately, and 3) the introduction of the dominant grass in the low‐diversity mixtures creates an ‘inverted’ sampling effect which can produce as an artefact a constant productivity response across the diversity gradient.
This paper reports the findings of a short-term natural invasibility field study in constructed Mediterranean herbaceous communities of varying diversities, under a fire treatment. Three components of invasibility, i.e. species richness, density and biomass of invaders, have been monitored in burnt and unburnt experimental plots with resident diversity ranging from monocultures to 18-species mixtures. In general, species richness, density and biomass of invaders decreased significantly with the increase of resident species richness. Furthermore, the density and biomass of invading species were significantly influenced by the species composition of resident communities. Although aboveground biomass, leaf area index, canopy height and percent bare ground of the resident communities explained a significant part of the variation in the success of invading species, these covariates did not fully explain the effects of resident species richness. Fire mainly influenced invasibility via soil nutrient levels. The effect of fire on observed invasibility patterns seems to be less important than the effects of resident species richness. Our results demonstrate the importance of species richness and composition in controlling the initial stages of plant invasions in Mediterranean grasslands but that there was a lack of interaction with the effects of fire disturbance.
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.