In this article, we review the downregulation of acetylcholinergic activity in schizophrenia and discuss the similarity and difference between Alzheimer's disease (AD) and schizophrenia in terms of acetylcholine (ACh) and anticholinergic activity (AA); then, we propose the use of cognition-enhancing therapy for schizophrenia. As ACh regulates an inflammatory system, when the cholinergic system is downregulated to a critical level, the inflammatory system is activated. We consider the possibility that AA appears endogenously in AD and accelerates AD pathology. This hypothesis can also be applied to schizophrenia. In fact, even before the onset of the disorder, in the prodromal phase of schizophrenia, cognitive dysfunction exists, and antibodies against astrocyte muscarinic-1 and muscarinic-2 receptors are present in the serum of patients with the paranoid type of schizophrenia. Then we noted that the prodromal phase in schizophrenia might correspond to the mild stage in AD and the acute phase to moderate stage concerning AA. We also think that we should enhance cognition in schizophrenia even in the prodromal phase because as mentioned above, downregulation of ACh is prominent in schizophrenia even in the prodromal phase.
We reported a procedure of serum anticholinergic activity (SAA) measurement and the reliability and reproducibility of the receptor binding assay, and we also described the usefulness of SAA measurement reflecting the anticholinergic activity (AA) in the central nervous system (CNS). According to the results of a 10 times repeated measurement of standard atropine binding, the relative error was between -5.5 and +3.7%, and we considered that measurement of SAA in our studies is accurate and validated. Downregulation of acetylcholine activates inflammation in both CNS and peripheral tissue, which causes AA in both sites. Therefore, changes of AA in the CNS link with SAA in the peripheral system even if a substance having AA does not penetrate through the blood-brain barrier. Then we redescribe issues that require attention in the measurement of SAA. It is generally defined that any SAA greater than the detection limit of a quantitative atropine equivalent level (≥1.95 nM in our study) is positive. According to previous studies, SAA is considered to be positive when its atropine equivalent is ≥1.95 nM and undetectable when this is <1.95 nM. Nevertheless, as a low SAA can act as AA in the CNS, we should assume that SAA might also be positive if its marker concentration is between 0 and 1.95 nM. In addition, SAA should be measured around 11 a.m. or somewhat later because of the diurnal rhythm of cortisol in humans.
Aim: Mind wandering (MW) has been closely associated with attention deficit hyperactivity disorder (ADHD); however, the field remains understudied in Japan. The present study examined MW in adults with ADHD using the Mind Excessively Wandering Scale (MEWS) in a Japanese clinical population.Methods: Fifty-two adults with ADHD (mean age, 33.0 years; 33 men), diagnosed per the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria, completed the MEWS, Mind Wandering Questionnaire, Conners' Adult ADHD Rating Scale (CAARS), Autism Spectrum Quotient (AQ), and Japanese Adult Reading Test-25.
Results:The mean MEWS score was 18.8 (standard deviation, 7.6). MEWS scores showed significant correlations with the CAARS Inattention/Memory Problems, Problems with Self-Concept, DSM-IV ADHD Symptoms Total, ADHD Index, and AQ scores. Higher MEWS scores were associated with greater ADHD and autism spectrum disorder symptoms in patients with ADHD.
Conclusion:Our results not only provide supporting evidence of the presence of excessive MW in adults with ADHD, but also indicate the heterogeneous nature of MW in ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.