This paper presents analyses and estimation of optimal control strategies of the parallel Hybrid Electric Vehicles (HEV) from the perspective of fuel economy and maximum energy regeneration during an active braking process. In the paper, there are four main control strategies of Continuously Variable Transmission (CVT) during a regenerative braking process depicted and discussed in detail. The four strategies are: 1) Control strategy of maximal use of regenerative braking. 2) Control strategy of CVT during to support workload of electrical motor according to maximal efficiency characteristics. 3) Control strategy of the CVT for maximal regenerative of energy of braking process per braking distance unit or braking time unit. 4) Discrete control strategy of the CVT with direct combinatorial applications of genetic algorithms and elements of fuzzy logic in control unit of the HEV. In all depicted control strategies, data of the HEV's drive system components, such as, electric motor, internal combustion engine, energy storage, transmission-CVT, are obtained from database of the software package ADVISOR ® of National Renewable Energy Laboratory (NREL).Index Terms -hybrid vehicle, optimal control strategies, fuzzy logic, genetic algorithms, regenerative process.
The effect of roadway intersection design is strictly linked to a reduction in traffic congestion, fuel consumption and emissions in an urban area. This paper presents a comparative result of the typical four-legged intersection and roundabout operational performance for effective management. Accordingly, a computer model for estimation traffic emissions for two kinds of intersections is created. This study presents a detailed analysis and modelling traffic flow emissions using PTV vissim software and methodology with reasonable solutions to plan a road intersection.
In the last decade, a number of research works in electrified vehicles have been devoted to the analysis of the electric consumption of battery electric vehicles and the evaluation of the main influencing factors. The literature analysis reveals that the electric motor size, efficiency, and driving condition substantially affect the electric energy stored in the vehicle battery. This paper studies the degree of sensitivity of energy consumption to electric motor size and to its efficiency map characteristics. In order to accomplish this task, three electric motors whose parameters are re-scaled to fit the maximum power torque and speed with different efficiency maps are simulated by installing them on two commercially available battery electric vehicles. This allows for isolating the influence of the efficiency map on electricity consumption. The original characteristics of the motors are then used to evaluate the influence on the electricity consumption of both the size and the efficiency characteristics. The results of the simulation revealed that the influences of the efficiency map and the electric motor size can be around 8–10% and 2–11%, respectively. When both factors are taken into account, the overall difference in electricity consumption can be around 10–21%.
The paper aims to present an analysis of the component sizes of commercially available vehicles with electrified powertrains. The paper provides insight into how the powertrain components (an internal combustion engine, an electric motor and a battery) of mass production electrified vehicles are sized. The data of wide range of mass production electrified vehicles are collected and analyzed. Firstly, the main requirements to performance of a vehicle are described. The power values to meet the main performance requirements are calculated and compared to the real vehicle data. Based on the calculated values of the power requirements the minimum sizes of the powertrain components are derived. The paper highlights how the sizing methodologies, described in the research literature, are implemented in sizing the powertrain of the commercially available electrified vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.