In the last decade, a number of research works in electrified vehicles have been devoted to the analysis of the electric consumption of battery electric vehicles and the evaluation of the main influencing factors. The literature analysis reveals that the electric motor size, efficiency, and driving condition substantially affect the electric energy stored in the vehicle battery. This paper studies the degree of sensitivity of energy consumption to electric motor size and to its efficiency map characteristics. In order to accomplish this task, three electric motors whose parameters are re-scaled to fit the maximum power torque and speed with different efficiency maps are simulated by installing them on two commercially available battery electric vehicles. This allows for isolating the influence of the efficiency map on electricity consumption. The original characteristics of the motors are then used to evaluate the influence on the electricity consumption of both the size and the efficiency characteristics. The results of the simulation revealed that the influences of the efficiency map and the electric motor size can be around 8–10% and 2–11%, respectively. When both factors are taken into account, the overall difference in electricity consumption can be around 10–21%.
The paper aims to present an analysis of the component sizes of commercially available vehicles with electrified powertrains. The paper provides insight into how the powertrain components (an internal combustion engine, an electric motor and a battery) of mass production electrified vehicles are sized. The data of wide range of mass production electrified vehicles are collected and analyzed. Firstly, the main requirements to performance of a vehicle are described. The power values to meet the main performance requirements are calculated and compared to the real vehicle data. Based on the calculated values of the power requirements the minimum sizes of the powertrain components are derived. The paper highlights how the sizing methodologies, described in the research literature, are implemented in sizing the powertrain of the commercially available electrified vehicles.
The non-contact measurement method development is caused by the need for precise measurement and elimination of an operator’s errors. The purpose of the atticle research is to develop a reliable small scale prototype model of non-contact point measuring system. The mathematical model of robotic articulated arm has been developed to analyze the forward kinematics. Then, the prototype model of a robotic arm and laser-sensor mounted technique have been developed to take the measurements. The idea was derived from the coordinate measuring machine working principle, that puts the tip or tool center point in the known position with necessary precision. Most of the production engineers rely on the measurement data obtained from the CMMs. Most of the CMMs used in Uzbekistan are mainly contact based CMMs that have a number of disadvantages, i.e. a liitle inspection time. Also, the ergonomics and redundancy of the CMMs body frame are not acceptable. The surfaces of a vehicle body frame are designed in the free forms to give better aerodynamics and smaller resistance coefficients that result in difficult shapes that is not possible to reach easily with the ordinary CMM. The scientifically-developed robotic arm based on the non-contact CMM helps to cope with this issues
The paper represents infrared laser and digital camera based equipment for measurement of gap and flushness on the automobile. The system is based on smartphone that is used as camera and database, while the red laser is targeted as measurement tool. The method used to measure the gap and flushness is based on laser triangulation. The camera on the smartphone captures the laser line projected on the body of the automobile and serves as database of captured photos. The measurement algorithm is done on remote computer based algorithm that serves as computation station for gap and flushness measurement. Experiments are done on real car body in laboratory conditions. The process is done as effective replacement of operator’s gap and flushness measurement in the production process. The results enable to eliminate the operators’ error and help to implement semi-automatic measurement system in theproduction plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.