In this study, soft computing and multilinear regression techniques were employed to develop models for prediction of progression of chip seal percent embedment depth ( Pe). The model uses inputs such as cumulative equivalent traffic volume, Vialit test results, dust content of aggregates, and initial embedment depth. Multilinear regression, adaptive neuro-fuzzy system, and artificial neural network techniques were used to estimate the Pe. The contribution of the variables affecting Pe was evaluated through a sensitivity analysis. The results indicate that while most of the proposed models were able to predict the Pe reasonably, the artificial neural network model performed the best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.