We present a novel discriminative regression based approach for the Constrained Local Models (CLMs) framework, referred to as the Discriminative Response Map Fitting (DRMF) method, which shows impressive performance in the generic face fitting scenario. The motivation behind this approach is that, unlike the holistic texture based features used in the discriminative AAM approaches, the response map can be represented by a small set of parameters and these parameters can be very efficiently used for reconstructing unseen response maps. Furthermore, we show that by adopting very simple off-the-shelf regression techniques, it is possible to learn robust functions from response maps to the shape parameters updates. The experiments, conducted on Multi-PIE, XM2VTS and LFPW database, show that the proposed DRMF method outperforms stateof-the-art algorithms for the task of generic face fitting. Moreover, the DRMF method is computationally very efficient and is real-time capable. The current MATLAB implementation takes 1 second per image. To facilitate future comparisons, we release the MATLAB code 1 and the pretrained models for research purposes.
The development of facial databases with an abundance of annotated facial data captured under unconstrained 'inthe-wild' conditions have made discriminative facial deformable models the de facto choice for generic facial landmark localization. Even though very good performance for the facial landmark localization has been shown by many recently proposed discriminative techniques, when it comes to the applications that require excellent accuracy, such as facial behaviour analysis and facial motion capture, the semi-automatic person-specific or even tedious manual tracking is still the preferred choice. One way to construct a person-specific model automatically is through incremental updating of the generic model. This paper deals with the problem of updating a discriminative facial deformable model, a problem that has not been thoroughly studied in the literature. In particular, we study for the first time, to the best of our knowledge, the strategies to update a discriminative model that is trained by a cascade of regressors. We propose very efficient strategies to update the model and we show that is possible to automatically construct robust discriminative person and imaging condition specific models 'in-the-wild' that outperform state-of-the-art generic face alignment strategies.
An ideal approach to the problem of pose-invariant face recognition would handle continuous pose variations, would not be database specific, and would achieve high accuracy without any manual intervention. Most of the existing approaches fail to match one or more of these goals. In this paper, we present a fully automatic system for pose-invariant face recognition that not only meets these requirements but also outperforms other comparable methods. We propose a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system. The current system can handle 3D pose variation up to +-45 in yaw and +-30 in pitch angles. Recognition experiments were conducted on the USF 3D, Multi-PIE, CMU-PIE, FERET, and FacePix databases. Our system not only shows excellent generalization by achieving high accuracy on all 5 databases but also outperforms other methods convincingly. International Conference on Computer Vision (ICCV)This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. AbstractAn ideal approach to the problem of pose-invariant face recognition would handle continuous pose variations, would not be database specific, and would achieve high accuracy without any manual intervention. Most of the existing approaches fail to match one or more of these goals. In this paper, we present a fully automatic system for poseinvariant face recognition that not only meets these requirements but also outperforms other comparable methods. We propose a 3D pose normalization method that is completely automatic and leverages the accurate 2D facial feature points found by the system. The current system can handle 3D pose variation up to ±45• in yaw and ±30• in pitch angles. Recognition experiments were conducted on the USF 3D, Multi-PIE, CMU-PIE, FERET, and FacePix databases. Our system not only shows excellent generalization by achieving high accuracy on all 5 databases but also outperforms other methods convincingly.
Abstract-We propose a method for automatic emotion recognition as part of the FERA 2011 competition [1] . The system extracts pyramid of histogram of gradients (PHOG) and local phase quantisation (LPQ) features for encoding the shape and appearance information. For selecting the key frames, kmeans clustering is applied to the normalised shape vectors derived from constraint local model (CLM) based face tracking on the image sequences. Shape vectors closest to the cluster centers are then used to extract the shape and appearance features. We demonstrate the results on the SSPNET GEMEP-FERA dataset. It comprises of both person specific and person independent partitions. For emotion classification we use support vector machine (SVM) and largest margin nearest neighbor (LMNN) and compare our results to the pre-computed FERA 2011 emotion challenge baseline [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.