The search for the optimal cell model for studying the pathogenesis of pathological scars is a pressing challenge. This study aimed at evaluating the feasibility of using telomerized fibroblasts for the in vitro 3D modeling of pathological hypertrophic scars. NF and Fb-hTERT cells were cultured as monolayers and spheroids in the absence and in the presence of TGFβ1. The metabolic activity of the cultured cells was assessed using the MTT assay. Cell migration was estimated using the scratch assay. The expression of genes associated with fibrous scar tissue growth was measured by qRT-PCR. Fb-hTERT cells were more metabolically active than NF cells in the presence of TGFβ1 (for 1 ng/ml: 179 ± 12% vs. 135 ± 13% respectively; p < 0,05). Spheroids grown from Fb-hTERT cells were significantly larger than those derived from NF cells. In the presence of TGFβ1, the expression of proteins associated with extracellular matrix production (COL1A1, COL3A1, FN1) was lower in Fb-hTERT cells than in NF cells (more than 25, 20 and 2-fold, respectively; p < 0.05). Intact NF cells were more active in closing the scratch than Fb-hTERT cells: on day 2, the gap closure rate was 2.28 times higher in NF cells (p < 0.05). Exposure to TGFβ1 stimulated Fb-hTERT, unlike NF cells, to close the gap 2 times faster on day 2 (p < 0.05). Thus, telomerized fibroblasts have a few phenotypic traits observed in keloid fibroblasts; still there are some limitations that should be accounted for when using Fb-hTERT cells for the modeling of pathological hypertrophic scars.
The HaCaT cell line represents the spontaneously immortalized non-carcinogenic human keratinocytes that are used as a model for studying the function of normal human keratinocytes. There are two TP53 alleles in the HaCaT cell genome, which comprise two gain-of-function (GOF) mutations acquired through spontaneous immortalization (mutTP53). Mutations result in the increased proliferation rate and violation of the stratification program. The study was aimed to assess the effects of the mutTP53 gene knockout on the HaCaT keratinocytes capability of proliferation and migration in the in vitro model of epidermal injury and regeneration (scratch test), and on the ability to form stratified epithelium in the organotypic epidermal model. To perform the scratch-test, cells were cultured until monolayer was formed, then the standardized injury was created. The organotypic model was obtained by growing keratinocytes in the polycarbonate membrane inserts with the pore size of 0.4 μm at the interface between the phases (air-liquid). It has been shown that the mutant TP53 gene knockout results in the increased migration capability of the HaCaT keratinocytes: in the HaCaT with the mutTP53 knockout, the defect closure occurred faster than in the appropriate group of the WT HaCaT (p < 0.05), on day three the defect size was 12% ± 3% and 66% ± 5% of the initial size. There is evidence that mutant TP53 in the HaCaT cells is a negative regulator of the laminin 5 expression (LAMC2 expression was 9.96 ± 1.92 times higher in the cells with the mutTP53 knockout, p < 0.05), however, this does not promote normalization of the program of epithelial differentiation and stratification followed by formation of the stratum corneum in the organotypic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.