High-resolution climate simulations require tremendous computing resources and can generate massive datasets. At present, preserving the data from these simulations consumes vast storage resources at institutions such as the National Center for Atmospheric Research (NCAR). The historical data generation trends are economically unsustainable, and storage resources are already beginning to limit science objectives. To mitigate this problem, we investigate the use of data compression techniques on climate simulation data from the Community Earth System Model. Ultimately, to convince climate scientists to compress their simulation data, we must be able to demonstrate that the reconstructed data reveals the same mean climate as the original data, and this paper is a first step toward that goal. To that end, we develop an approach for verifying the climate data and use it to evaluate several compression algorithms. We find that the diversity of the climate data requires the individual treatment of variables, and, in doing so, the reconstructed data can fall within the natural variability of the system, while achieving compression rates of up to 5:1.
While the amount of data used by today's high-performance computing (HPC) codes is huge, HPC users have not broadly adopted data compression techniques, apparently because of a fear that compression will either unacceptably degrade data quality or that compression will be too slow to be worth the effort. In this paper, we examine the effects of three lossy compression methods (GRIB2 encoding, GRIB2 using JPEG 2000 and LZMA, and the commercial Samplify APAX algorithm) on decompressed data quality, compression ratio, and processing time. A careful evaluation of selected lossy and lossless compression methods is conducted, assessing their influence on data quality, storage requirements and performance. The differences between input and decoded datasets are described and compared for the GRIB2 and APAX compression methods. Performance is measured using the compressed file sizes and the time spent on compression and decompression. Test data consists both of 9 synthetic data exposing compression behavior and 123 climate variables output from a climate model. The benefits of lossy compression for HPC systems are described and are related to our findings on data quality.
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck on future high performance computing architectures. This paper shows that, in a number of cases, compression levels of 2-5X can be applied without causing a significant change in the physical quantities that are of most interest for the simulation.Rather than applying classical error metrics from signalprocessing, we utilize physics based metrics appropriate for each code to evaluate the impact of compression. We evaluate simulations run with three different codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. We apply compression to relevant quantities after each time-step to approximate the effects of tightly coupled compression and also study the compression rates to estimate disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. We compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.