To gain an economic advantage in the last decade many organizations have invested billions of dollars in research and development programs that span over a varied range of activities from smart pills for image sensing and monitoring, smart drug delivery for targeted therapy, through to more futuristic products based on memristive systems and metamaterials. The need for smart components has become evident and intelligent integrated circuits (I 2 C) based upon horizontal integration of radically differing technologies have been clearly identified as the driving force for future generation of products. As an example, a nanophotonic clinic based on system on chip (SoC) and system on system (SoS) technologies can be created using multifunctional nanoparticles in which therapeutic or monitoring agents are encapsulated and activated or monitored with either electromagnetic or light waves [1][2][3]. Embedded nano-based biophotonic sensors, for example that could be powered and monitored remotely to observe a wide range of physiological conditions such as status of internal tissues, blood sugar and oxygen level, blood pressure etc., would provide important enabling capabilities for robotic microsurgery. The integration of bio-devices with non-biological material provides higher performance in applications such as biomolecular motors for targeted drag delivery and bio-micro-electromechanical systems as analyte detector system with recognition capability of antigen-antibody. The ability to transmit and receive data efficiently will be a major challenge-as the consequence the 'first centimeter' communication (body sensors and clothing) as part of the over-all communications strategy brings about new opportunities in health care and aged care environments. Such progress supported by bio-based technologies provide the foundation for a future in which information sensing, embedded processing, imaging and multi-level communication become pervasive [4,5].Light-wave technology (photonics) synonymous with high speed networks is also beginning to show its footprint in areas that not so long ago appeared to be far removed from the conventional information communication technology arena. Photonics has always been viewed as an alternate to electronic systems to transmit, distribute, and process high volumes of digital The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of hetero...