Image encryption is among the most active solutions to protect confidential pictorial information. However, to design a strong image encryption algorithm with no recognizable pattern, the researchers in this field have to enrich the confusion and diffusion properties. This study proposes an efficient hybrid system that combines two techniques. First, we propose a modified version of Rubik's Cube technique for scrambling colored image pixels to achieve fast confusion. This technique not only scrambles the position of image pixels but also scrambles the color channels. Then, dynamic DNA encoding algorithm is used to encrypt the pixel's values. DNA encoding rules are used in conjunction with a secret key. We propose to select the DNA rules dynamically to enhance the security level. Five fidelity metrics are employed to assess the capability of this system. These are PSNR, SSIM, NPCR, Entropy, and CCA. The results indicate that the proposed system enhances the general security requirements with enriched confusion and diffusion properties of the encrypted image.
The art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the center of the block and then store another bit in the write or left bit depended on differences between them.
The proposed method was applied to many color images and many measurement terms used to show the efficiency of it. The experiment result showed good result that the PSNR = 53.76, MSE = 0.273, SSIM= 0.999, with embedding rates 0.55
The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA). The proposed method performance is evaluated in terms of PSNR, RMSE and SSIM. The results show that the fusion quality of the proposed algorithm is better than obtained by several other fusion methods, including SWT, PCA with RGB source images and PCA with YCbCr source images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.