The wireless sensor networks are autonomous sensors that are distributed to monitor environmental and physical conditions and pass them across the network to other areas, which is considered one of the key elements that are used in the applications of smart cities. Therefore, this paper aims to provide a design to add more smart applications to the sanctuary and other compounds based on wireless sensor networks using ZigBee technology. The transition from reliance on the style of surveillance and controlled manually by staff to apply the principles of smart applications through wireless sensor network which provides the ability to getting all the necessary information and capabilities of controlling and monitoring are required to automatically and thus saving the time, effort, and money. The system proposed in this paper to design a smart monitoring system at the campus to control the opening and closing of the doors of many halls and the possibility of including lighting systems and appliances. The results obtained from OPNET program show that the network topology, which used within a ZigBee network vary in terms of performance, thus giving options for designers to build their network and choose technologies that suit their project.
Abstract-Mobile Ad-hoc Networks (MANETs) involved in many applications, whether smart or traditional and for both civilian and military uses, and that because of their special features, where it does not depend on any infrastructure during its working, as well as the nodes in MANETs have a freedom of movement with the ability to self-configure, in addition, to working as a router or client at the same time. Moreover, MANETs considered as an infrastructure less network, so the cost of this type of networks is less in comparison to other traditional networks. On the other hand, the routing considered one of most important challenges in MANETs due to the perpetual motion and randomness of the nodes that can causing a continuous change of the network topology and thus to all paths between nodes, where finding valid paths between the nodes is the core task of routing protocols. Recently, it has been argued that the traditional layered architecture is ineffective to deal with receiving signal strength related problems. In an effort to improve the performance of MANETs, there has been increased in protocols that rely on cross-layer interaction between different layers. In this paper, a Cross-layer design among Network, MAC and Physical layers based on Threshold Multipath Routing Protocol (CTMRP) is proposed. The CTMRP is designed for decision maker based on threshold value of average paths signal for efficient transmission of the Text, image, audio and video as well as sending the data via multiple paths, which mitigate the negatives effects causes from forcing the nodes to send the data via single. The Route Discovery Delay, Number of RREQ Messages, Number of RREP Messages, End-to-End Delay, Packet Delivery Ratio (PDR), and Throughput were selected as the main performance evaluation metrics. The results show that the proposed algorithm has better performance and lead to increase stability of transmission link.
Mobile Ad-hoc networks (MANETs) involved in many applications, whether commercial or military because of their characteristics that do not depend on the infrastructure as well as the freedom movement of their elements, but in return has caused this random mobility of the nodes many of the challenges, where the routing is considered one of these challenges. There are many types of routing protocols that operate within MANET networks, which responsible for finding paths between the source and destination nodes with the modernization of these paths which are constantly changing due to the dynamic topology of the network stemming from the constant random movement of the nodes. The DSR (Dynamic Source Routing) routing protocol algorithm is one of these routing protocols which consist of two main stages; route discovery and maintenance, where the route discovery algorithm operates based on blind flooding of request messages. blind flooding is considered as the most well known broadcasting mechanism, it is inefficient in terms of communication and resource utilization, which causing increasing the probability of collisions, repeating send several copies of the same message, as well as increasing the delay. Hence, a new mechanism in route discovery stage and in caching the routes in DSR algorithm according to the node's location in the network and the direction of the broadcast is proposed for better performance especially in terms of delay as well as redundant packets rate. The implementation of proposed algorithms showed positive results in terms of delay, overhead, and improve the performance of MANETs in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.