Although the main focus of immuno-oncology has been manipulating the adaptive immune system, harnessing both the innate and adaptive arms of the immune system might produce superior tumour reduction and elimination. Tumour-associated macrophages often have net pro-tumour effects, but their embedded location and their untapped potential provide impetus to discover strategies to turn them against tumours. Strategies that deplete (anti-CSF-1 antibodies and CSF-1R inhibition) or stimulate (agonistic anti-CD40 or inhibitory anti-CD47 antibodies) tumour-associated macrophages have had some success. We hypothesized that pharmacologic modulation of macrophage phenotype could produce an anti-tumour effect. We previously reported that a first-in-class selective class IIa histone deacetylase (HDAC) inhibitor, TMP195, influenced human monocyte responses to the colony-stimulating factors CSF-1 and CSF-2 in vitro. Here, we utilize a macrophage-dependent autochthonous mouse model of breast cancer to demonstrate that in vivo TMP195 treatment alters the tumour microenvironment and reduces tumour burden and pulmonary metastases by modulating macrophage phenotypes. TMP195 induces the recruitment and differentiation of highly phagocytic and stimulatory macrophages within tumours. Furthermore, combining TMP195 with chemotherapy regimens or T-cell checkpoint blockade in this model significantly enhances the durability of tumour reduction. These data introduce class IIa HDAC inhibition as a means to harness the anti-tumour potential of macrophages to enhance cancer therapy.
Despite decades of effort, the sensitivity of patient tumors to individual drugs is often not predictable on the basis of molecular markers alone. Therefore, unbiased, high-throughput approaches to match patient tumors to effective drugs, without requiring a priori molecular hypotheses, are critically needed. Here, we improved upon a method that we previously reported and developed called high-throughput dynamic BH3 profiling (HT-DBP). HT-DBP is a microscopy-based, single-cell resolution assay that enables chemical screens of hundreds to thousands of candidate drugs on freshly isolated tumor cells. The method identifies chemical inducers of mitochondrial apoptotic signaling, a mechanism of cell death. HT-DBP requires only 24 hours of ex vivo culture, which enables a more immediate study of fresh primary tumor cells and minimizes adaptive changes that occur with prolonged ex vivo culture. Effective compounds identified by HT-DBP induced tumor regression in genetically engineered and patient-derived xenograft (PDX) models of breast cancer. We additionally found that chemical vulnerabilities changed as cancer cells expanded ex vivo. Furthermore, using PDX models of colon cancer and resected tumors from colon cancer patients, our data demonstrated that HT-DBP could be used to generate personalized pharmacotypes. Thus, HT-DBP appears to be an ex vivo functional method with sufficient scale to simultaneously function as a companion diagnostic, therapeutic personalization, and discovery tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.