The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Supported lipid bilayers (SLBs) are popular models of cell membranes with potential bio-technological applications. A qualitative understanding of the process of SLB formation after exposure of small lipid vesicles to a hydrophilic support is now emerging. Recent studies have revealed a stunning variety of effects that can take place during this self-organization process. The ensemble of results in our group has revealed unprecedented insight into intermediates of the SLB-formation process and has helped to identify a number of parameters that are determinant for the lipid deposition on solid supports. The pathway of lipid deposition can be tuned by electrostatic interactions and by the presence of calcium. We emphasize the importance of the solid support in the SLB-formation process. Our results suggest that the molecular-level interaction between lipids and the solid support needs to be considered explicitly, to understand the rupture of vesicles and the formation of SLBs as well as to predict the properties of the resulting SLB. The impact of the SLB-formation process on the quality and the physical properties of the resulting SLB as well as implications for other types of surface-confined lipid bilayers are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.