Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.
Nonfluorescent highly virulent strains of Pseudomonas syringae pv. aptata isolated in different European countries and in Uruguay produce a nonfluorescent peptide siderophore, the production of which is iron repressed and specific to these strains. The amino acid composition of this siderophore is identical to that of the dominant fluorescent peptide siderophore produced by fluorescent P. syringae strains, and the molecular masses of the respective Fe(III) chelates are 1,177 and 1,175 atomic mass units. The unchelated nonfluorescent siderophore is converted into the fluorescent siderophore at pH 10, and colors and spectral characteristics of the unchelated siderophores and of the Fe(III)-chelates in acidic conditions are similar to those of dihydropyoverdins and pyoverdins, respectively. The nonfluorescent siderophore is used by fluorescent and nonfluorescent P. syringae strains. These results and additional mass spectrometry data strongly suggest the presence of a pyoverdin chromophore in the fluorescent siderophore and a dihydropyoverdin chromophore in the nonfluorescent siderophore, which are both ligated to a succinamide residue. When chelated, the siderophores behave differently from typical pyoverdins and dihydropyoverdins in neutral and alkaline conditions, apparently because of the ionization occurring around pH 4.5 of carboxylic acids present in -hydroxyaspartic acid residues of the peptide chains. These differences can be detected visually by pH-dependent changes of the chelate colors and spectrophotochemically. These characteristics and the electrophoretic behavior of the unchelated and chelated siderophores offer new tools to discriminate between saprophytic fluorescent Pseudomonas species and fluorescent P. syringae and P. viridiflava strains and to distinguish between the two siderovars in P. syringae pv. aptata.
The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups were determined: the Yersinia pestis group, the P. syringae group, and the Photorhabdus luminescens group; yersiniabactin locus organization is similar in P. syringae and P. luminescens. In P. syringae pv. tomato DC3000, the locus has a high GC content (63.4% compared with 58.4% for the chromosome and 60.1% and 60.7% for adjacent regions) but it lacks high-pathogenicity-island features, such as the insertion in a tRNA locus, the integrase, and insertion sequence elements. In P. syringae pv. tomato DC3000 and pv. phaseolicola 1448A, the locus lies between homologues of Psyr_2284 and Psyr_2285 of P. syringae pv. syringae B728a, which lacks the locus. Among tested pseudomonads, a PCR test specific to two yersiniabactin locus groups detected a locus in genospecies 3, 7, and 8 of P. syringae, and DNA hybridization within P. syringae also detected a locus in the pathovars phaseolicola and glycinea. The PCR and HPLC methods enabled analysis of nonpathogenic Escherichia coli. HPLC-proven yersiniabactin-producing E. coli lacked modifications found in irp1 and irp2 in the human pathogen CFT073, and it is not clear whether CFT073 produces yersiniabactin. The study provides clues about the evolution and dispersion of yersiniabactin genes. It describes methods to detect and study yersiniabactin producers, even where genes have evolved.Iron is essential for life in nearly all microorganisms. However, it is not readily available because the solubility of ferric ions at neutral pH is very low, and generally iron exists precipitated or chelated to iron-binding proteins in a host and to various compounds in the environment (7,34,48,67). A frequent mechanism used by bacteria to meet their needs for iron is the secretion of low-molecular-mass iron chelating compounds called siderophores. Siderophores are able to solubilize iron and translocate it back to the bacterial cytosol via a specific outer membrane receptor and via transport proteins located in the periplasm and in the inner membrane (7, 67).Yersiniabactin (YBT) is a bacterial siderophore with a very high stability constant for iron (4 ϫ 10 36 ) that was characterized in Yersinia pestis and Yersinia enterocolitica (15,24,33,63). It has been extensively studied because it is a virulence factor widespread among human-and animal-pathogenic enterobacteria. In Yersinia spp. (14, 64), the YBT iron uptake system, called the YBT locus (ϳ30 kb), is located in the 36-kb (Yersinia pseudotuberculosis and Y. pestis) or 43-kb (Y. enterocolitica) genomic high-pathogenicity island (HPI). The YBT locus contains one regulatory gene, three genes involved in transport, and the YBT synthesis genes (review...
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.The species Pseudomonas syringae contains all of the phytopathogenic and oxidase-negative fluorescent pseudomonads except Pseudomonas viridiflava (27,38). P. syringae is divided into 57 pathovars that are pathogenic for numerous monocot and dicot crops (13). P. syringae strains are well adapted to conditions on plant surfaces. A better understanding of the ecological benefits of these pathogens is necessary if new and efficient methods of biological control are to be developed. One of these benefits could be the production of peptide siderophores in iron-deficient environments (8,33). In general, the peptide siderophores produced by fluorescent Pseudomonas strains are pyoverdins (2, 3). All pyoverdins contain the same quinoline chromophore, a peptide chain, and a dicarboxylic acid (or the corresponding amide) connected to the chromophore. The peptide chain is always the same for a given strain but is different in different strains and species (2). Two partially characterized peptide siderophores of P. syringae that have been described (8, 33) have Fe(III)-binding constants at pH 7.0 of about 1 ϫ 10 25 . These values are 10 times higher than the values obtained for pyoverdins produced by saprophytic fluorescent Pseudomonas strains (8, 33). Therefore, it would be interesting to know whether production of these molecules is common in P. syringae strains and whether the molecules are effectively produced on plant surf...
A collection of Pseudomonas syringae and viridiflava isolates was established between 1993 and 2002 from diseased organs sampled from 36 pear, plum and cherry orchards in Belgium. Among the 356 isolates investigated in this study, phytotoxin, siderophore and classical microbiology tests, as well as the genetical methods REP-, ERIC-and BOX-(collectively, rep-) and IS50-PCR, enabled identification to be made of 280 isolates as P. syringae pv. syringae (Pss), 41 isolates as P. syringae pv. morsprunorum (Psm) race 1, 12 isolates as Psm race 2, three isolates as P. viridiflava and 20 isolates as unclassified P. syringae. The rep-PCR methods, particularly BOX-PCR, proved to be useful for identifying the Psm race 1 and Psm race 2 isolates. The latter race was frequent on sour cherry in Belgium. Combined genetic results confirmed homogeneities in the pvs avii, and morsprunorum race 1 and race 2 and high diversity in the pv. syringae. In the pv. syringae, homogeneous genetic groups consistently found on the same hosts (pear, cherry or plum) were observed. Pathogenicity on lilac was sometimes variable among Pss isolates from the same genetic group; also, some Psm race 2 and unclassified P. syringae isolates were pathogenic to lilac. In the BOX analyses, four patterns included 100% of the toxic lipodepsipeptide (TLP)-producing Pss isolates pathogenic to lilac. Many TLP-producing Pss isolates non-pathogenic to lilac and the TLP-non-producing Pss isolates were classified differently. Pseudomonas syringae isolates that differed from known fruit pathogens were observed in pear, sour cherry and plum orchards in Belgium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.