Dendroctonus valens is an invasive pest in coniferous forests of northern China. It was suspected of being responsible for the death of more than three million Pinus tabuliformis trees. The present study sought to identify the ophiostomatoid fungi associated with D. valens in northern China and understand the possible role of these fungi in the pine decline. On the basis of morphology, physiology, mating compatibility and phylogenetic analyses of multiple DNA sequences, seven species of ophiostomatoid fungi were isolated from and around D. valens galleries: Leptographium alethinum, Grosmannia koreana (teleomorph of L. koreanum), L. procerum, L. sinoprocerum, L. truncatum, Pesotum aureum and P. pini. All have been recorded for the first time in China. Among them, the occurrence of the dominant species L. procerum is positively linked to attack intensities of D. valens. The pathogenicity of four species (L. koreanum, L. procerum, L. sinoprocerum and L. truncatum) was tested on mature P. tabuliformis trees by stem inoculation. All inoculated strains caused significant necrotic lesions on the inner bark. However, L. koreanum and L. truncatum induced more extensive lesions than L. procerum and L. sinoprocerum. Their association with D. valens and the P. tabuliformis decline is discussed.
Pseudomonas fuscovaginae is a Gram-negative fluorescent pseudomonad pathogenic towards several plant species. Despite its importance as a plant pathogen, no molecular studies of virulence have thus far been reported. In this study we show that P. fuscovaginae possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems which we designated PfsI/R and PfvI/R. The PfsI/R system is homologous to the BviI/R system of Burkholderia vietnamiensis and produces and responds to C10-HSL and C12-HSL whereas PfvI/R is homologous to the LasI/R system of Pseudomonas aeruginosa and produces several long-chain 3-oxo-HSLs and responds to 3-oxo-C10-HSL and 3-oxo-C12-HSL and at high AHL concentrations can also respond to structurally different long-chain AHLs. Both systems were found to be negatively regulated by a repressor protein which was encoded by a gene located intergenically between the AHL synthase and LuxR-family response regulator. The pfsI/R system was regulated by a novel repressor designated RsaM while the pfvI/R system was regulated by both the RsaL repressor and by RsaM. The two systems are not transcriptionally hierarchically organized but share a common AHL response and both are required for plant virulence. Pseudomonas fuscovaginae has therefore a unique complex regulatory network composed of at least two different repressors which directly regulate the AHL QS systems and pathogenicity.
Sixty-eight presumptive Xanthomonas translucens strains isolated from 15 small grains or grass species were studied by pathogenicity tests on barley, bread wheat, oat, and bromegrass species, and also by AFLP, analysis of fatty acid methyl esters (FAME), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of protein extracts. The X. translucens strains were divided into three pathogenicity types based on differences observed on barley and bread wheat. Two unspeciated strains producing atypical symptoms formed a fourth pathogenicity type. Pathogenicity on oat and bromegrass species varied within these types. Clusterings observed by AFLP analysis and, to a lesser extent, by FAME analysis were consistent with these pathogenicity groupings. The current results, as well as those of previous restriction fragment length polymorphism analyses of the same strains, support the recent reclassification of X. translucens pv. translucens and X. translucens pv. hordei as true synonyms. X. translucens pv. cerealis, X. translucens pv. translucens, and X. translucens pv. undulosa cluster in different groups by AFLP and FAME analyses. Even though distinction by simple biochemical tests is not clear-cut, the data indicate that the pathovars cerealis, translucens, and undulosa correspond to true biological entities.
Nonfluorescent highly virulent strains of Pseudomonas syringae pv. aptata isolated in different European countries and in Uruguay produce a nonfluorescent peptide siderophore, the production of which is iron repressed and specific to these strains. The amino acid composition of this siderophore is identical to that of the dominant fluorescent peptide siderophore produced by fluorescent P. syringae strains, and the molecular masses of the respective Fe(III) chelates are 1,177 and 1,175 atomic mass units. The unchelated nonfluorescent siderophore is converted into the fluorescent siderophore at pH 10, and colors and spectral characteristics of the unchelated siderophores and of the Fe(III)-chelates in acidic conditions are similar to those of dihydropyoverdins and pyoverdins, respectively. The nonfluorescent siderophore is used by fluorescent and nonfluorescent P. syringae strains. These results and additional mass spectrometry data strongly suggest the presence of a pyoverdin chromophore in the fluorescent siderophore and a dihydropyoverdin chromophore in the nonfluorescent siderophore, which are both ligated to a succinamide residue. When chelated, the siderophores behave differently from typical pyoverdins and dihydropyoverdins in neutral and alkaline conditions, apparently because of the ionization occurring around pH 4.5 of carboxylic acids present in -hydroxyaspartic acid residues of the peptide chains. These differences can be detected visually by pH-dependent changes of the chelate colors and spectrophotochemically. These characteristics and the electrophoretic behavior of the unchelated and chelated siderophores offer new tools to discriminate between saprophytic fluorescent Pseudomonas species and fluorescent P. syringae and P. viridiflava strains and to distinguish between the two siderovars in P. syringae pv. aptata.
Improvement of the taxonomy of the genus Xanthomonas and especially of Xanthomonas campestris, which is subdivided into more than 125 pathovars, is discussed. Recent contributions to the taxonomy of Xanthomonas are reviewed, and on the basis of these data and unpublished data from several laboratories, the usefulness of different phenotypic, chemotaxonomic, and genotypic techniques is discussed. The heterogeneity of several X. campestris pathovars has been demonstrated by sodium dodecyl sulfate electrophoresis of whole-cell proteins and fatty acid fingerprinting. The host selectivity of the pathovars is not correlated with their relationships as revealed by DNA-DNA hybridization experiments. In order to reveal the phylogenetic relationships among X. campestris pathovars and their relationships to other Xanthomonas species, it will be necessary to perform extensive DNA-DNA homology studies as an essential part of a polyphasic approach. At present, six DNA homology groups within X. campestris have been delineated. A systematic approach to improve the taxonomy of the genus Xanthomonas is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.