Rationale:The cardiac sodium channel Na v 1.5 plays a key role in excitability and conduction. The 3 last residues of Na v 1.5 (Ser-Ile-Val) constitute a PDZ-domain binding motif that interacts with the syntrophin-dystrophin complex. As dystrophin is absent at the intercalated discs, Na v 1.5 could potentially interact with other, yet unknown, proteins at this site.Objective: The aim of this study was to determine whether Na v 1.5 is part of distinct regulatory complexes at lateral membranes and intercalated discs. Methods and Results:Immunostaining experiments demonstrated that Na v 1.5 localizes at lateral membranes of cardiomyocytes with dystrophin and syntrophin. Optical measurements on isolated dystrophin-deficient mdx hearts revealed significantly reduced conduction velocity, accompanied by strong reduction of Na v 1.5 at lateral membranes of mdx cardiomyocytes. Pull-down experiments revealed that the MAGUK protein SAP97 also interacts with the SIV motif of Na v 1.5, an interaction specific for SAP97 as no pull-down could be detected with other cardiac MAGUK proteins (PSD95 or ZO-1). Furthermore, immunostainings showed that Na v 1.5 and SAP97 are both localized at intercalated discs. Silencing of SAP97 expression in HEK293 and rat cardiomyocytes resulted in reduced sodium current (I Na ) measured by patch-clamp. The I Na generated by Na v 1.5 channels lacking the SIV motif was also reduced. Finally, surface expression of Na v 1.5 was decreased in silenced cells, as well as in cells transfected with SIV-truncated channels. Conclusions:These data support a model with at least 2 coexisting pools of Na v 1.5 channels in cardiomyocytes: one targeted at lateral membranes by the syntrophin-dystrophin complex, and one at intercalated discs by SAP97. (Circ Res. 2011;108:294-304.) Key Words: sodium channel Ⅲ Na v 1.5 Ⅲ MAGUK proteins Ⅲ SAP97 Ⅲ dystrophin T he cardiac sodium channel Na v 1.5 initiates the cardiac action potential, thus playing a key role in cardiac excitability and impulse propagation. The physiological importance of this channel is illustrated by numerous cardiac pathologies caused by hundreds of mutations identified in SCN5A, the gene encoding Na v 1.5. 1 The Na v 1.5 channel is composed of one 220-kDa ␣-subunit that constitutes a functional channel, and 30-kDa -subunits. In addition to these accessory -subunits, several proteins have been shown to regulate and interact with Na v 1.5. 1,2 In most cases, the physiological relevance of these interactions is poorly understood, mainly because of a lack of appropriate animal models. Many of the interacting proteins bind to the C terminus of Na v 1.5, where several protein-protein interaction motifs are located. 1,2 We have shown that the ubiquitin-protein ligase Nedd4-2 binds the PY motif of Na v 1.5 and reduces the sodium current (I Na ) in HEK293 cells by promoting its internalization. 3 We have also demonstrated that Na v 1.5 associates with the dystrophin-syntrophin multiprotein complex (DMC) in cardiac cells. 4 In dystrophin-deficient mice (m...
Mechanosensitive ion channels from Escherichia coli were studied in giant proteoliposomes reconstituted from an inner membrane fraction, or in giant round cells in which the outer membrane and the cell wall had been disrupted by a lysozyme-EDTA treatment and a mild osmotic shock. Patch-clamp experiments revealed the presence in these two preparations of an array of different conductances (100 to 2,300 pS in 0.1 M KCl) activated by stretch. The electrical activity induced by stretch in the native membrane was complex, due to the activation of several different conductances. In contrast, patches of proteoliposomes generally contained clusters of identical conductances, which differed from patch to patch. These experiments are consistent with the notion that these different conductances correspond to different proteins in the plasma membrane of E. coli, which segregate into clusters of identical channels on dilution involved in reconstitution in proteoliposomes. These conductances could be grouped into three subfamilies of poorly selective channels. In both preparations, the higher the conductance, the higher was the negative pressure needed for activation. We discuss the putative role of these channels as parts of a multicomponent osmoregulatory system.
Bacteria subjected to a hypotonic osmotic shock lose internal ions and also metabolites, without lysis of the cells. We show that the presence in the shock medium, at submillimolar concentrations, of the ion gadolinium, recently shown to block stretch-activated channels in Xenopus oocytes [Yang, X.-C. & Sachs, F. (1989) Science 243,1068 -10711, was sufficient to inhibit shock-induced release of metabolites such as lactose and ATP in Escherichia coli and ATP in Streptococcus faecalis. Moreover, gadolinium was observed, in patch-clamp experiments, to inhibit the giant stretch-activated channels of E. coli , S. faecalis. and Bacillus subtilis. Taken together, these data suggest that stretch-activated channels are localized in the cytoplasmic membrane of Gram-negative and Gram-positive bacteria, where they control the efflux of osmotic solutes, thus probably playing a major role in the response to hypotonic osmotic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.