SummaryRNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants. These modi®cations of transcript levels were con®rmed by physiological experiments. Plants infected with P. thivervalensis were more resistant to subsequent infections by the virulent pathogen P. syringae pv. tomato (strain DC3000) than control plants. In addition, photosynthesis rates were repressed consistently with the reduced growth of plants colonized by P. thivervalensis. These results highlight the value of molecular phenotyping to predict physiological changes.
Gas exchanges of wheat (Triticum aestivum L. cv. Courtot) shoots were measured before and during a water stress. While photosynthesis, transpiration and dark respiration decreased because of the stress, photorespiration increased initially, up to a maximum of 50% above its initial value. The CO2 concentration in the intercellular space was calculated from gas-diffusion resistances, and remained approximately constant before and during the stress. On the other hand, the CO2 concentration in the chloroplast, in the vicinity of Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco), was evaluated from the ratio of CO2 to O2 uptake, using the known kinetic constants of the oxygenation and carboxylation reactions which compete for Rubisco. In the well-watered plants, the calculated chloroplastic concentration was slightly smaller than the substomatal concentration. During water stress, this concentration decreased while the substomatal CO2 concentration remained constant. Hypotheses to explain this difference between substomatal and chloroplastic CO2 concentrations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.