Recent experimental results suggest that As(III) and Sb(III) transport in prokaryotes and eukaryotes might be facilitated by aquaglyceroporins. GlpF, the glycerol facilitator in Escherichia coli was the first to be identified as a trivalent metalloid transporter. Quantum calculations have been performed to study the possible existence of common structural properties between As(OH) 3 and Sb(OH) 3 and glycerol. Because the mechanism of substrate migration is primarily related to the successive formation of hydrogen bonds between the substrate and the hydrophilic part of the channel wall, this study has focused on the structural, thermodynamic, and electrostatic comparison of the main As(III) and Sb(III) compounds present in aqueous solution at physiological pH values, As(OH) 3 and Sb(OH) 3, with the glycerol conformation closest to the structures of these As- and Sb-containing compounds. This particular glycerol conformation has then been compared to three known experimental conformations of glycerol present in the protein channel. Besides their stoichiometry and electroneutral condition, As(OH) 3 and Sb(OH) 3 show very strong similarities to both each other and the studied conformation of the glycerol molecule: Namely, they show a similar charge distribution and a slightly smaller volume than glycerol. Their smaller size can be an additional advantage for the transit through the narrowest region of the GlpF channel. However, the metalloid hydroxyl groups lack the flexibility of glycerol, which probably helps this molecule to adapt its conformation to the topology of the GlpF channel.
The cover picture shows the influence of pressure on the 1 H NMR signals (right) of the protons of the p-xylyl bridge in the Ag complex of the CHIRAGEN ligand depicted in light blue color. The doubling of the signal is due to the presence of two circular helicates, a hexamer (top left) and a tetramer (top right), both with predetermined absolute configurations. Increasing pressure shifts the equilibrium from the hexamer to the tetramer. The reaction volume has a remarkably large negative value. The study of this equilibrium system is described in more detail by A. von Zelewsky and A. Merbach et al. on p. 533 ff.
The complexation reactions between Ag- and a series of enantiopure ligands belonging to the CHIRAGEN (from CHIRAlity GENerator) family (L1, L2, L3, based on (-)-5,6-pinene bipyridine) have been studied in solution. It has been shown that the length of the bridge plays a fundamental role in the self-assembly processes leading to different compounds: mononuclear complexes (with L3), mixtures of polynuclear complexes (with L2) and circular helicates (with L 1). Although the absolute configuration of the chiral centres in all three ligands is the same, the metal-centred chirality of L3 (delta) is inverted with respect to that in the other two complexes with L1 and L2 (delta). The metal configuration is thus opposite in the mononuclear complex with respect to the polynuclear species. Detailed thermodynamic studies were carried out for the Ag+ and L1 ligand system by 1H and 109Ag NMR spectroscopy (as a function of concentration, temperature and pressure). At low temperature and high pressure, the [Ag6L1(6)]6+ hexanuclear circular helicate forms a tetranuclear circular helicate [Ag4L1(4)]4+: 2[Ag6L1(6)]6+ <=> 3 [Ag4L1(4)]4+. The thermodynamics parameters, obtained by temperature and pressure variation, have the following values: K298 = (8.7 +/- 0.7) x 10(-5) mol x kg(-1), deltaHo = -15.65 +/- 0.8 kJ x mol(-1), deltaSo = -130.2 +/- 3 J x mol(-1) x K(-1) and deltaVo(256 K)= -160 +/- 12 cm3 x mol(-1). The reaction volume calculated according to Connolly's method indicates that the calculated structure of [Ag4L1(4)]4+ is plausible. Both the signs and large magnitudes of deltaSo and deltaVo are counterintuitive, yet can be understood by modelling methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.