Molecular mechanisms underlying diabetes-induced painful neuropathy are poorly understood. We have demonstrated, in rats with streptozotocin-induced diabetes, that mechanical hyperalgesia, a common symptom of diabetic neuropathy, was correlated with an early increase in extracellular signal-regulated protein kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) phosphorylation in the spinal cord and dorsal root ganglion at 3 weeks after induction of diabetes. This change was specific to hyperalgesia because nonhyperalgesic rats failed to have such an increase. Immunoblot analysis showed no variation of protein levels, suggesting a post-translational regulation of the corresponding kinases. In diabetic hyperalgesic rats, immunocytochemistry revealed that all phosphorylated mitogen-activated protein kinases (MAPKs) colocalized with both the neuronal (NeuN) and microglial (OX42) cell-specific markers but not with the astrocyte marker [glial fibrillary acidic protein (GFAP)] in the superficial dorsal horn-laminae of the spinal cord. In these same rats, a 7-day administration [5 g/rat/day, intrathecal (i.t.)] of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126), 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), and anthra(1,9-cd)pyrazol-6(2H)-one (SP600125), which inhibited MAPK kinase, p38, and JNK, respectively, suppressed mechanical hyperalgesia, and decreased phosphorylation of the kinases. To characterize the cellular events upstream of MAPKs, we have examined the role of the NMDA receptor known to be implicated in pain hypersensitivity. The prolonged blockade of this receptor during 7 days by (5R,10S)-(ϩ)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK801; 5 g/rat/day, i.t.), a noncompetitive NMDA receptor antagonist, reversed hyperalgesia developed by diabetic rats and blocked phosphorylation of all MAPKs. These results demonstrate for the first time that NMDA receptor-dependent phosphorylation of MAPKs in spinal cord neurons and microglia contribute to the establishment and longterm maintenance of painful diabetic hyperalgesia and that these kinases represent potential targets for pain therapy.Sensitive peripheral neuropathies represent a common and debilitating complication of diabetes (types 1 and 2) and affect an increasing proportion of diabetic patients as the disease progresses. Even though antidepressant and antiepileptic agents have been shown to be partially effective, clinical studies have reported the difficulty of managing pain caused by these neuropathies (Sindrup and Jensen, 1999), which may be due to changes in peripheral nerve or to neuronal processing (e.g., central sensitization in the spinal cord) (Woolf and Salter, 2000). Whereas the pathophysiological and neuroanatomical changes associated with the development of neuropathic pain are well documented, the molecular and cellular mechanisms underlying its initiation and maintenance remain poorly understood.The mitogen-activated protein kinase (MAPK...
Neuropathic pain is a common diabetic complication affecting 8-16% of diabetic patients. It is characterized by aberrant symptoms of spontaneous and stimulus-evoked pain including hyperalgesia and allodynia. Magnesium (Mg) deficiency has been proposed as a factor in the pathogenesis of diabetes-related complications, including neuropathy. In the central nervous system, Mg is also a voltage-dependant blocker of the N -methyl-d-aspartate receptor channels involved in abnormal processing of sensory information. We hypothesized that Mg deficiency might contribute to the development of neuropathic pain and the worsening of clinical and biological signs of diabetes and consequently, that Mg administration could prevent or improve its complications. We examined the effects of oral Mg supplementation (296 mg l −1 in drinking water for 3 weeks) on the development of neuropathic pain and on biological and clinical parameters of diabetes in streptozocin (STZ)-induced diabetic rats. STZ administration induced typical symptoms of type 1 diabetes. The diabetic rats also displayed mechanical hypersensitivity and tactile and thermal allodynia. The level of phosphorylated NMDA receptor NR1 subunit (pNR1) was higher in the spinal dorsal horn of diabetic hyperalgesic/allodynic rats. Magnesium supplementation failed to reduce hyperglycaemia, polyphagia and hypermagnesiuria, or to restore intracellular Mg levels and body growth, but increased insulinaemia and reduced polydipsia. Moreover, it abolished thermal and tactile allodynia, delayed the development of mechanical hypersensitivity, and prevented the increase in spinal cord dorsal horn pNR1. Thus, neuropathic pain symptoms can be attenuated by targeting the Mg-mediated blockade of NMDA receptors, offering new therapeutic opportunities for the management of chronic neuropathic pain.
Nociceptin/orphanin FQ (noci/OFQ), the endogenous ligand for the orphan ORL1 (opioid receptor-like1), has been shown to be anti- or pronociceptive and modify morphine analgesia in rats after central administration. We comparatively examined the effect of noci/OFQ on hyperalgesia and morphine analgesia in two experimental models of neuropathic pain: diabetic (D) and mononeuropathic (MN) rats. Noci/OFQ, when intrathecally (i.t.) injected (0.1, 0.3, or 1, to 10 microg/rat) was ineffective in normal rats, but reduced and suppressed mechanical hyperalgesia (paw-pressure test) in D and MN rats, respectively. This spinal inhibitory effect was suppressed by naloxone (10 microg/rat, i.t.) in both models. Combinations of systemic morphine with spinal noci/OFQ resulted in a strong potentiation of analgesia in D rats. In MN rats, an isobolographic analysis showed that the morphine+noci/OFQ association (i.t.) suppressed mechanical hyperalgesia in a superadditive manner. In summary, the present findings reveal that spinal noci/OFQ produces a differential antinociception in diabetic and traumatic neuropathic pain according to the etiology of neuropathy, an effect possibly mediated by opioid receptors. Moreover, noci/OFQ combined with morphine produces antinociceptive synergy in experimental neuropathy, opening new opportunities in the treatment of neuropathic pain.
Sedative activity of Juglans regia L. (Juglandaceae) chloroform extract and of one of its isolated constituents was evaluated in mice. Dry chloroform extract and juglone, orally administered at 6.5 mg/kg and 0.125 mg/kg, respectively, induced marked sedation as measured by two tests (actimeter and sleep potentiation), compared with controls (diazepam, 2 mg/kg, per os). A separation method of juglone from chloroform extract was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.