Contents
Summary 1
Introduction 2
The characteristics of legume nodule senescence 3
Redox homeostasis and programmed cell death 6
Antioxidants and programmed cell death during the senescence process 10
Perspectives for manipulating nodule senescence 13
Conclusions and perspectives 14
Acknowledgements 15
References 15
Summary
Research on legume nodule development has contributed greatly to our current understanding of plant–microbe interactions. However, the factors that orchestrate root nodule senescence have received relatively little attention. Accumulating evidence suggests that redox signals contribute to the establishment of symbiosis and senescence. Although degenerative in nature, nodule senescence is an active process programmed in development in which reactive oxygen species (ROS), antioxidants, hormones and proteinases have key roles. Nodules have high levels of the redox buffers, ascorbate and glutathione, which are important in the nodulation process and in senescence. These metabolites decline with N‐fixation as the nodule ages but the resultant decrease in redox buffering capacity does not necessarily lead to enhanced ROS or oxidative stress. We propose models by which ROS and antioxidants interact with hormones such as abscisic acid in the orchestration of nodule senescence.
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.