Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled .94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.A major opportunity for a sustainable energy and biomaterials economy in many parts of the world lies in a better understanding of the molecular basis of superior growth and adaptation in woody plants. Part of this opportunity involves species of Eucalyptus L'Hér, a genus of woody perennials native to Australia 1 . The remarkable adaptability of eucalypts coupled with their fast growth and superior wood properties has driven their rapid adoption for plantation forestry in more than 100 countries across six continents (.20 million ha) 2 , making eucalypts the most widely planted hardwood forest trees in the world. The subtropical E. grandis and the temperate E. globulus stand out as targets of breeding programmes worldwide. Planted eucalypts provide key renewable resources for the production of pulp, paper, biomaterials and bioenergy, while mitigating human pressures on native forests 3 . Eucalypts also have a large diversity and high concentration of essential oils (mixtures of mono-and sesquiterpenes), many of which have ecological functions as well as medicinal and industrial uses. Predominantly outcrossers 1 with hermaphroditic animal-pollinated flowers, eucalypts are highly heterozygous and display pre-and postzygotic barriers to selfing to reduce inbreeding depression for fitness and survival 4 .To mitigate the challenge of assembling a highly heterozygous genome, we sequenced the genome of 'BRASUZ1', a 17-year-old E. grandis genotype derived from one generation of selfing. The availability of annotated forest tree genomes from two separately evolving rosid lineages, Eucalyptus (order Myrtales) and Populus (order Malpighiales 5 ), in combination with genomes from domesticated woody plants (for example, Vitis, Prunus, Citrus), provides a comparative foundation for addressing
Plant peroxidases (class III peroxidases) are present in all land plants. They are members of a large multigenic family. Probably due to this high number of isoforms, and to a very heterogeneous regulation of their expression, plant peroxidases are involved in a broad range of physiological processes all along the plant life cycle. Due to two possible catalytic cycles, peroxidative and hydroxylic, peroxidases can generate reactive oxygen species (ROS) ( • OH, HOO• ), polymerise cell wall compounds, and regulate H 2 O 2 levels. By modulating their activity and expression following internal and external stimuli, peroxidases are prevalent at every stage of plant growth, including the demands that the plant meets in stressful conditions. These multifunctional enzymes can build a rigid wall or produce ROS to make it more flexible; they can prevent biological and chemical attacks by raising physical barriers or by counterattacking with a large production of ROS; they can be involved in a more peaceful symbiosis. They are finally present from the first hours of a plant's life until its last moments. Although some functions look paradoxical, the whole process is probably regulated by a fine-tuning that has yet to be elucidated. This review will discuss the factors that can influence this delicate balance.Keywords Evolution . ROS . (abiotic and biotic) stress . Cell wall loosening and cross-linking . Senescence . Fruit ripening . Symbiosis Multigenic family, evolution and homologyHeme peroxidases specific to plants belong to a superfamily that contains three different classes of peroxidases Communicated by P. Kumar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.