Plant peroxidases (class III peroxidases) are present in all land plants. They are members of a large multigenic family. Probably due to this high number of isoforms, and to a very heterogeneous regulation of their expression, plant peroxidases are involved in a broad range of physiological processes all along the plant life cycle. Due to two possible catalytic cycles, peroxidative and hydroxylic, peroxidases can generate reactive oxygen species (ROS) ( • OH, HOO• ), polymerise cell wall compounds, and regulate H 2 O 2 levels. By modulating their activity and expression following internal and external stimuli, peroxidases are prevalent at every stage of plant growth, including the demands that the plant meets in stressful conditions. These multifunctional enzymes can build a rigid wall or produce ROS to make it more flexible; they can prevent biological and chemical attacks by raising physical barriers or by counterattacking with a large production of ROS; they can be involved in a more peaceful symbiosis. They are finally present from the first hours of a plant's life until its last moments. Although some functions look paradoxical, the whole process is probably regulated by a fine-tuning that has yet to be elucidated. This review will discuss the factors that can influence this delicate balance.Keywords Evolution . ROS . (abiotic and biotic) stress . Cell wall loosening and cross-linking . Senescence . Fruit ripening . Symbiosis Multigenic family, evolution and homologyHeme peroxidases specific to plants belong to a superfamily that contains three different classes of peroxidases Communicated by P. Kumar
In higher plants, class III peroxidases exist as large multigene families (e.g. 73 genes in Arabidopsis thaliana). The diversity of processes catalysed by peroxidases as well as the large number of their genes suggests the possibility of a functional specialization of each isoform. In addition, the fact that peroxidase promoter sequences are very divergent and that protein sequences contain both highly conserved domains and variable regions supports this hypothesis. However, two difficulties are associated with the study of the function of specific peroxidase genes: (i) the modification of the expression of a single peroxidase gene often results in no visible mutant phenotype, because it is compensated by redundant genes; and (ii) peroxidases show low substrate specificity in vitro resulting in an unreliable indication of peroxidase specific activity unless complementary data are available. The generalization of molecular biology approaches such as whole transcriptome analysis and recombinant DNA combined with biochemical approaches provide unprecedented tools for overcoming these difficulties. This review highlights progress made with these new techniques for identifying the specific function of individual class III peroxidase genes taking as an example the model plant A. thaliana, as well as discussing some other plants.
Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term 109 Cd and 65 Zn uptake in mesophyll protoplasts of Thlaspi caerulescens "Ganges" and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens "Prayon," accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the MichaelisMenten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of "Ganges," whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens "Prayon," Cd could be transported by a Zn and Ca pathway, whereas in "Ganges," Cd could be transported mainly by other pathways.Cadmium (Cd) and zinc (Zn) are two widespread harmful heavy metals, but there is no cost-effective mean to remove them from the soil. Although phytoextraction using hyperaccumulator plants is seen as a promising technique, a lack of understanding of the basic physiological, biochemical, and molecular mechanisms involved in heavy metal hyperaccumulation prevents the optimization of the phytoextraction technique and its further commercial application. Therefore, a research priority is to gain basic information on the dynamics of metal movement into the cells, their final allocation, and their sink capacities in hyperaccumulating species.Thlaspi caerulescens and Arabidopsis halleri are both plants able to hyperaccumulate Zn and Cd (Robinson et al., 1998; Bert et al., 2000). In T. caerulescens, Zn seems to be sequestrated preferentially in vacuoles of epidermal cells in a soluble form (Kü pper et al., 1999; Frey et al., 2000). In A. halleri leaves, Zn was found to be predominantly coordinated to malate (Sarret et al., 2002) and accumulated in the mesophyll cells (Kü pper et al., 2000;Zhao et al., 2000). An important trait of hyperaccumulating species might be enhanced translocation of the absorbed metal to the shoot. Time course studies of Zn accumulation revealed that T. caerulescens exhibited a 10-fold greater Zn translocation to the shoot a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.