BACKGROUND: Non-invasive brain stimulation (NIBS) is a promising tool for facilitating motor function. NIBS therapy in conjunction with training using postural feedback may facilitate physical rehabilitation following posture disorders (e.g., Pusher Syndrome). OBJECTIVES:The objectives of this study were, 1) to develop a low-cost point-of-care-testing (POCT) system for standing posture, 2) to investigate the effects of anodal tDCS on functional reach tasks using the POCT system. METHODS: Ten community-dwelling elderly (age >50 years) subjects evaluated the POCT system for standing posture during functional reach tasks where their balance score on Berg Balance Scale was compared with that from Center-of-Mass (CoM) -Center-of-Pressure (CoP) posturography. Then, in a single-blind, sham-controlled study, five healthy right-leg dominant subjects (age: 26.4 ± 5.3 yrs) were evaluated using the POCT system under two conditions -with anodal tDCS of primary motor representations of right tibialis anterior muscle and with sham tDCS. RESULTS:The maximum CoP-CoM lean-angle was found to be well correlated with the BBS score in the elderly subjects The anodal tDCS strongly (p = 0.0000) affected the maximum CoP excursions but not the return reaction time in healthy. CONCLUSION: It was concluded that the CoM-CoP lean-line could be used for posture feedback and monitoring during tDCS therapy in conjunction with balance training exercises.
Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function.
The World Health Organization estimated that major depression is the fourth most significant cause of disability worldwide for people aged 65 and older, where depressed older adults reported decreased independence, poor health, poor quality of life, functional decline, disability, and increased chronic medical problems. Therefore, the objectives of this study were (1) to develop a low-cost point-of-care testing system for psychomotor symptoms of depression and (2) to evaluate the system in community dwelling elderly in India. The preliminary results from the cross-sectional study showed a significant negative linear correlation between balance and depression. Here, monitoring quantitative electroencephalography along with the center of pressure for cued response time during functional reach tasks may provide insights into the psychomotor symptoms of depression where average slope of the Theta-Alpha power ratio versus average slope of baseline-normalized response time may be a candidate biomarker, which remains to be evaluated in our future clinical studies. Once validated, the biomarker can be used for monitoring the outcome of a comprehensive therapy program in conjunction with pharmacological interventions. Furthermore, the frequency of falls can be monitored with a mobile phone-based application where the propensity of falls during the periods of psychomotor symptoms of depression can be investigated further.
Functional Electrical Stimulation (FES) facilitates ambulatory function after paralysis by electrically activating the muscles of the lower extremities. The Odstock Dropped Foot Stimulator (ODFS, Odstock, UK) called ODFS Pace, was used for heel-switch triggered FES-assisted walking. The ODFS is recommended as an intervention for neurologically impaired gait in the Royal College of Physicians (UK) Clinical Guidelines on Stroke. Based on the guidelines by the National Institute of Clinical Excellence (NICE, UK), we started first clinical study in India on ODFS Pace as an orthotic intervention for daily use. In this preliminary study, we also investigated improvement in volitional walking following 6 sessions (3 times per week, for 2 weeks) of 30 minutes of FES-assisted treadmill walking on 7 chronic (>6 months after stroke) stroke survivors. We found that short-duration, moderately intensive FES-assisted gait therapy improved volitional gait in 3 out of 7 stroke survivors suffering from foot drop. Even in absence of improvement in volitional walking, there were no adverse effects and the subjects found heel-switch triggered FES-assisted walking mostly “easy” (6 out of 7). Therefore FES is promising as an orthotic intervention for daily use; however, tailoring the intensity and/or frequency based on patient's ability may make it viable as a therapeutic intervention.
Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources-switch-trigger or EMG-trigger-were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool-recurrence quantification analysis (RQA)-was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters-the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES-assisted gait training. Therefore, the study showed an improvement in paretic muscle function during a fatiguing task following gait training with EMG-triggered NMES. This study also showed that RQA parameters-%Rec and %Det-were sensitive to changes in paretic/non-paretic muscle properties due to gait training and can be used for non-invasive muscle monitoring in stroke survivors undergoing rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.