Functional Electrical Stimulation (FES) facilitates ambulatory function after paralysis by electrically activating the muscles of the lower extremities. The Odstock Dropped Foot Stimulator (ODFS, Odstock, UK) called ODFS Pace, was used for heel-switch triggered FES-assisted walking. The ODFS is recommended as an intervention for neurologically impaired gait in the Royal College of Physicians (UK) Clinical Guidelines on Stroke. Based on the guidelines by the National Institute of Clinical Excellence (NICE, UK), we started first clinical study in India on ODFS Pace as an orthotic intervention for daily use. In this preliminary study, we also investigated improvement in volitional walking following 6 sessions (3 times per week, for 2 weeks) of 30 minutes of FES-assisted treadmill walking on 7 chronic (>6 months after stroke) stroke survivors. We found that short-duration, moderately intensive FES-assisted gait therapy improved volitional gait in 3 out of 7 stroke survivors suffering from foot drop. Even in absence of improvement in volitional walking, there were no adverse effects and the subjects found heel-switch triggered FES-assisted walking mostly “easy” (6 out of 7). Therefore FES is promising as an orthotic intervention for daily use; however, tailoring the intensity and/or frequency based on patient's ability may make it viable as a therapeutic intervention.
Functional electrical stimulation (FES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The FES-assisted stepping can either be triggered by a heel-swich, or by an electromyogram-(EMG-) based gait event detector. A group of six chronic (>6 months poststroke) hemiplegic stroke survivors underwent transcutaneous FES-assisted training for 1 hour on stepping task with EMG biofeedback from paretic tibialis anterior (TA) and medial gastrocnemius (GM) muscles, where the stimulation of the paretic TA or GM was triggered with surface EMG from the same muscle. During the baseline, postintervention, and 2-day-postintervention assessments, a total of 5 minutes of surface EMG was recorded from paretic GM and TA muscles during volitional treadmill walking. Two-way ANOVA showed significant effects in terms of P values for the 6 stroke subjects, 0.002, the 3 assessments, 0, and the interaction between subjects and assessments, 6.21E-19. The study showed a significant improvement from baseline in paretic GM and TA muscles coordination during volitional treadmill walking. Moreover, it was found that the EMG-triggered FES-assisted therapy for stand-to-walk transition helped in convergence of the deviation in centroidal angular momentum from the normative value to a quasi-steady state during the double-support phase of the nonparetic. Also, the observational gait analysis showed improvement in ankle plantarflexion during late stance, knee flexion, and ground clearance of the foot during swing phase of the gait.
Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources-switch-trigger or EMG-trigger-were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool-recurrence quantification analysis (RQA)-was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters-the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES-assisted gait training. Therefore, the study showed an improvement in paretic muscle function during a fatiguing task following gait training with EMG-triggered NMES. This study also showed that RQA parameters-%Rec and %Det-were sensitive to changes in paretic/non-paretic muscle properties due to gait training and can be used for non-invasive muscle monitoring in stroke survivors undergoing rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.