Background and objectives: Biofilm formation is an important virulence factor that protects an organism from antimicrobial agents as well as host immune effectors, thus allowing organisms to invade, survive, and cause persistent-reoccurring infection in host cells. The aim of this study was to investigate the ability of sepsis-causing gram-negative bacteria to form biofilms, evaluate the association between antibiotic resistance pattern and biofilm formation, determine the role and influence of biofilm formation on pathogenicity and clinical outcome of sepsis. Methods: A prospective study conducted from October 2020 to August 2021, non-replicated gram-negative bacteria isolates were recovered from blood samples of patients with suspected bacteremia, sepsis, and sepsis shock and identified using biochemical procedures. Antimicrobial susceptibility patterns of GNB isolates were determined using the Kirby-Bauer disc diffusion method and interpreted using CLSI guidelines. The ability of GNB isolates to form biofilm was assessed using Congo red agar and the tissue culture plate method. Results: Of the 160 Gram-negative bacteria tested, biofilm formation was seen in 73 (45.63%) isolates. Isolates are Klebsiella pneumoniae (39.73%), Acinetobacter spp. (34.25%), Escherichia coli (23.29%), Pseudomonas aeruginosa (1.37%), and other non-fermenters (1.37%). Isolates were highly resistant to cephalosporins, fluoroquinolones, and the penicillin group of antibiotics. No statistical relationship was found between resistance pattern, clinical outcome, and biofilm formation. Conclusion: In the current study, we found that 45.63% of gram-negative bacteria causing sepsis were biofilm producers. Klebsiella pneumonia isolates exhibited the highest levels of biofilm formation and antimicrobial resistance. Based on the strength of biofilm formation, most isolates were weak biofilm producers, and there was no statistical correlation between the formation of biofilms and antimicrobial resistance, indicating that the formation of biofilms was not a determining factor for resistance.
The rise in antibiotic resistance has been a major source of public health concern. As a result, mortality and morbidity rates have risen significantly. This study was done to identify gram-negative organisms causing bacteremia/sepsis, study their prevalence rates, and antimicrobial resistance patterns, as evidence-based knowledge of gram-negative organisms causing sepsis and their resistance profiles is essential for effective hospital control and better management of infections caused by resistant bacteria. A retrospective study, conducted from January 2016 to December 2019, blood samples were collected using aseptic guidelines and cultured using automated blood culture methods. Biochemical tests were done according to microbiology standard procedures, while antimicrobial testing was done according to CLSI guidelines. A total of 13,808 blood samples were received within the study period of four years. Of the total, 2079 showed significant growth, with 765 being GNB isolates. The most common isolates were Escherichia coli (35.42%), Klebsiella pneumonia (19.74%), Acinetobacter species (9.67%), and other non-fermenting gram-negative bacilli (11.76%). Escherichia coli showed yearly resistance to aminoglycosides, cephalosporins, penicillin, fluoroquinolones, and B-lactam combination agents. Routine surveillance and awareness of the prevalence, etiological agents, and antibiotic resistance of gram-negative bacteria causing bacteremia/sepsis is critical for individual therapy, hospital control, and the effectiveness of preventive interventions.
Prior to the Severe Acute Respiratory Syndrome Coronavirus Disease 2 (SARS-CoV-2) pandemic, the rise in antimicrobial resistance was a major source of concern in public health. However, due to the novelty of SARS-CoV-2 infection during the pandemic, antibiotics were administered prior to laboratory testing for secondary gram-negative bacteria (SGNB) in order to avoid or reduce the occurrence of SGNB infection. The purpose of this study was to investigate the etiology, prevalence, and antimicrobial susceptibility pattern of gram-negative bacteria (GNB) isolated from SARS-CoV-2 positive patients. Respiratory and blood samples were collected from confirmed SARS-CoV-2 positive patients. They were subsequently cultured and bacterial isolates identified according to standard microbiological protocols. Antimicrobial susceptibility testing (AST) was performed and interpreted according to Clinical & Laboratory Standards Institute (CLSI) 2021 guidelines. A total of sixty-four non-repetitive GNB were isolated from respiratory samples and twenty-two GNB from blood samples. K. pneumoniae was the major cause of SGNB, followed by Acinetobacter species. K. pneumoniae had over 60% resistance to β-Lactam combination agents, cephalosporin, and the carbapenem group of antibiotics. In the current study, we observed that K. pneumoniae was the major cause of SGNB and had high resistance to the antimicrobial agents. Hence, it is important that the epidemiology and susceptibility patterns of circulating organisms causing SGNB infection are always monitored to inform clinical treatment and decrease the occurrence of antibiotic-resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.