Oropharyngeal candidiasis is one of the common manifestations seen in cancer patients on cytotoxic therapy and invasion into deeper tissues can occur if not treated promptly. Emergence of antifungal drug resistance is of serious concern owing to the associated morbidity and mortality. The present study aims at evaluation of clinicomycological association and antifungal drug susceptibility among the 180 recruited patients with cancer on chemotherapy and/or radiotherapy with signs or symptoms suggestive of oral candidiasis. Speciation and antifungal susceptibility was done by Microbroth dilution method for fluconazole, Itraconazole, and Amphotericin B as per standard microbiological techniques. Chi-square test was used for statistical analysis (p < 0.05 was considered statistically significant). Candida albicans was the predominant species isolated (94) (58%) followed by Candida tropicalis (34) (20.9%). Fluconazole and Itraconazole showed an overall resistance rate of 14% and 14.8%, respectively. All the isolates were susceptible to Amphotericin B. There was a significant association between the presence of dry mouth and isolation of Candida (p < 0.001). Such clinicomicrobiological associations can help in associating certain symptoms with the isolation of Candida. Species level identification with in vitro antifungal susceptibility pattern is essential to choose the appropriate drug and to predict the outcome of therapy.
Background and Objectives: The emergence of methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamases (ESBLs) in neonatal intensive care unit patients is increasing.
Background and objectives: Biofilm formation is an important virulence factor that protects an organism from antimicrobial agents as well as host immune effectors, thus allowing organisms to invade, survive, and cause persistent-reoccurring infection in host cells. The aim of this study was to investigate the ability of sepsis-causing gram-negative bacteria to form biofilms, evaluate the association between antibiotic resistance pattern and biofilm formation, determine the role and influence of biofilm formation on pathogenicity and clinical outcome of sepsis. Methods: A prospective study conducted from October 2020 to August 2021, non-replicated gram-negative bacteria isolates were recovered from blood samples of patients with suspected bacteremia, sepsis, and sepsis shock and identified using biochemical procedures. Antimicrobial susceptibility patterns of GNB isolates were determined using the Kirby-Bauer disc diffusion method and interpreted using CLSI guidelines. The ability of GNB isolates to form biofilm was assessed using Congo red agar and the tissue culture plate method. Results: Of the 160 Gram-negative bacteria tested, biofilm formation was seen in 73 (45.63%) isolates. Isolates are Klebsiella pneumoniae (39.73%), Acinetobacter spp. (34.25%), Escherichia coli (23.29%), Pseudomonas aeruginosa (1.37%), and other non-fermenters (1.37%). Isolates were highly resistant to cephalosporins, fluoroquinolones, and the penicillin group of antibiotics. No statistical relationship was found between resistance pattern, clinical outcome, and biofilm formation. Conclusion: In the current study, we found that 45.63% of gram-negative bacteria causing sepsis were biofilm producers. Klebsiella pneumonia isolates exhibited the highest levels of biofilm formation and antimicrobial resistance. Based on the strength of biofilm formation, most isolates were weak biofilm producers, and there was no statistical correlation between the formation of biofilms and antimicrobial resistance, indicating that the formation of biofilms was not a determining factor for resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.