Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools for applying the sparse identification of nonlinear dynamics (SINDy) approach to data-driven model discovery. In this major update to PySINDy, we implement several advanced features that enable the discovery of more general differential equations from noisy and limited data. The library of candidate terms is extended for the identification of actuated systems, partial differential equations (PDEs), and implicit differential equations. Robust formulations, including the integral form of SINDy and ensembling techniques, are also implemented to improve performance for real-world data. Finally, we provide a range of new optimization algorithms, including several sparse regression techniques and algorithms to enforce and promote inequality constraints and stability. Together, these updates enable entirely new SINDy model discovery capabilities that have not been reported in the literature, such as constrained PDE identification and ensembling with different sparse regression optimizers.
Accurate and efficient plasma models are essential to understand and control experimental devices. Existing magnetohydrodynamic or kinetic models are nonlinear, computationally intensive, and can be difficult to interpret, while often only approximating the true dynamics. In this work, data-driven techniques recently developed in the field of fluid dynamics are leveraged to develop interpretable reduced-order models of plasmas that strike a balance between accuracy and efficiency. In particular, dynamic mode decomposition (DMD) is used to extract spatio-temporal magnetic coherent structures from the experimental and simulation datasets of the HIT-SI experiment. Three-dimensional magnetic surface probes from the HIT-SI experiment are analyzed, along with companion simulations with synthetic internal magnetic probes. A number of leading variants of the DMD algorithm are compared, including the sparsity-promoting and optimized DMD. Optimized DMD results in the highest overall prediction accuracy, while sparsity-promoting DMD yields physically interpretable models that avoid overfitting. These DMD algorithms uncover several coherent magnetic modes that provide new physical insights into the inner plasma structure. These modes were subsequently used to discover a previously unobserved three-dimensional structure in the simulation, rotating at the second injector harmonic. Finally, using data from probes at experimentally accessible locations, DMD identifies a resistive kink mode, a ubiquitous instability seen in magnetized plasmas.
Modern tokamaks have achieved significant fusion production, but further progress towards steady-state operation has been stymied by a host of kinetic and MHD instabilities. Control and identification of these instabilities is often complicated, warranting the application of data-driven methods to complement and improve physical understanding. In particular, Alfvén eigenmodes are a class of ubiquitous mixed kinetic and MHD instabilities that are important to identify and control because they can lead to loss of confinement and potential damage to the walls of a plasma device. In the present work, we use reservoir computing networks (RCNs) to classify Alfvén eigenmodes in a large, expert-identified database of DIII-D discharges, covering a broad range of operational parameter space. Despite the large parameter space, we show excellent classification and prediction performance, with an average hit rate of 91% and false alarm ratio of 7%, indicating promise for future implementation with additional diagnostic data and consolidation into a real-time control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.