In many applications it is important to estimate a fluid flow field from limited and possibly corrupt measurements. Current methods in flow estimation often use least squares regression to reconstruct the flow field, finding the minimum-energy solution that is consistent with the measured data. However, this approach may be prone to overfitting and sensitive to noise. To address these challenges we instead seek a sparse representation of the data in a library of examples. Sparse representation has been widely used for image recognition and reconstruction, and it is well-suited to structured data with limited, corrupt measurements. We explore sparse representation for flow reconstruction on a variety of fluid data sets with a wide range of complexity, including vortex shedding past a cylinder at low Reynolds number, a mixing layer, and two geophysical flows. In addition, we compare several measurement strategies and consider various types of noise and corruption over a range of intensities. We find that sparse representation has considerably improved estimation accuracy and robustness to noise and corruption compared with least squares methods. We also introduce a sparse estimation procedure on local spatial patches for complex multiscale flows that preclude a global sparse representation. Based on these results, sparse representation is a promising framework for extracting useful information from complex flow fields with realistic measurements.
Throughout the history of science, physics-based modeling has relied on judiciously approximating observed dynamics as a balance between a few dominant processes. However, this traditional approach is mathematically cumbersome and only applies in asymptotic regimes where there is a strict separation of scales in the physics. Here, we automate and generalize this approach to non-asymptotic regimes by introducing the idea of an equation space, in which different local balances appear as distinct subspace clusters. Unsupervised learning can then automatically identify regions where groups of terms may be neglected. We show that our data-driven balance models successfully delineate dominant balance physics in a much richer class of systems. In particular, this approach uncovers key mechanistic models in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience.
Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behaviour are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behaviour to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using forward and adjoint Fokker–Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by coloured noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply Langevin regression to experimental measurements of a turbulent bluff body wake and show that the statistical behaviour of the centre of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.
Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools for applying the sparse identification of nonlinear dynamics (SINDy) approach to data-driven model discovery. In this major update to PySINDy, we implement several advanced features that enable the discovery of more general differential equations from noisy and limited data. The library of candidate terms is extended for the identification of actuated systems, partial differential equations (PDEs), and implicit differential equations. Robust formulations, including the integral form of SINDy and ensembling techniques, are also implemented to improve performance for real-world data. Finally, we provide a range of new optimization algorithms, including several sparse regression techniques and algorithms to enforce and promote inequality constraints and stability. Together, these updates enable entirely new SINDy model discovery capabilities that have not been reported in the literature, such as constrained PDE identification and ensembling with different sparse regression optimizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.