The Region Connection Calculus (RCC) [41] is a well-known calculus for representing part-whole and topological relations. It plays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC5 and RCC8 (two fragments of RCC) as well as other qualitative spatial/temporal calculi has been investigated in depth in the literature. Most of these works focus on the consistency of qualitative constraint networks. In this paper, we consider the important problem of redundant qualitative constraints. For a set Γ of qualitative constraints, we say a constraint (xRy) in Γ is redundant if it is entailed by the rest of Γ. A prime subnetwork of Γ is a subset of Γ which contains no redundant constraints and has the same solution set as Γ. It is natural to ask how to compute such a prime subnetwork, and when it is unique.In this paper, we show that this problem is in general intractable, but becomes tractable if Γ is over a tractable subalgebra S of a qualitative calculus. Furthermore, if S is a subalgebra of RCC5 or RCC8 in which weak composition distributes over nonempty intersections, then Γ has a unique prime subnetwork, which can be obtained in cubic time by removing all redundant constraints simultaneously from Γ. As a byproduct, we show that any path-consistent network over such a distributive subalgebra is weakly globally consistent and minimal. A thorough empirical analysis of the prime subnetwork upon real geographical data sets demonstrates the approach is able to identify significantly more redundant con- * Corresponding Author
Computing trajectory similarity is a fundamental operation in movement analytics, required in search, clustering, and classification of trajectories, for example. Yet the range of different but interrelated trajectory similarity measures can be bewildering for researchers and practitioners alike. This paper describes a systematic comparison and methodical exploration of trajectory similarity measures. Specifically, this paper compares five of the most important and commonly used similarity measures: dynamic time warping (DTW), edit distance (EDR), longest common subsequence (LCSS), discrete Fréchet distance (DFD), and Fréchet distance (FD). The paper begins with a thorough conceptual and theoretical comparison. This comparison highlights the similarities and differences between measures in connection with six different characteristics, including their handling of a relative versus absolute time and space, tolerance to outliers, and computational efficiency. The paper further reports on an empirical evaluation of similarity in trajectories with contrasting properties: data about constrained bus movements in a transportation network, and the unconstrained movements of wading birds in a coastal environment. A set of four experiments: a. creates a measurement baseline by comparing similarity measures to a single trajectory subjected to various transformations; b. explores the behavior of similarity measures on network-constrained bus trajectories, grouped based on spatial and on temporal similarity; c. assesses similarity with respect to known behavioral annotations (flight and foraging of oystercatchers); and d. compares bird and bus activity to examine whether they are distinguishable based solely on their movement patterns. The results show that in all instances both the absolute value and the ordering of similarity may be sensitive to the choice of measure. In general, all measures were more able to distinguish spatial differences in trajectories than temporal differences. The paper concludes with a high-level summary of advice and recommendations for selecting and using trajectory similarity measures in practice, with conclusions spanning our three complementary perspectives: conceptual, theoretical, and empirical.
This paper examines efficient and decentralized monitoring of objects moving in a transportation network. Previous work in moving object monitoring has focused primarily on centralized information systems, like moving object databases and geographic information systems. In contrast, in this paper monitoring is in-network, requiring no centralized control and allowing for substantial spatial constraints to the movement of information. The transportation network is assumed to be augmented with fixed checkpoints that can detect passing mobile objects. This assumption is motivated by many practical applications, from traffic management in vehicle ad hoc networks to habitat monitoring by tracking animal movements. In this context, this paper proposes and evaluates a family of efficient decentralized algorithms for capturing, storing and querying the movements of objects. The algorithms differ in the restrictions they make on the communication and sensing constraints to the mobile nodes and the fixed checkpoints. The performance of the algorithms is evaluated and compared with respect to their scalability (in terms of communication and space complexity), and their latency (the time between when a movement event occurs, and when all interested nodes are updated with records about that event). The conclusions identify three key principles for efficient decentralized monitoring of objects moving past checkpoints: structuring computation around neighboring checkpoints; taking advantage of mobility diffusion and separating the generation and querying of movement information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.