This paper presents the outcomes from a joint research project that aims to develop a smartphone application/online platform to model the most thermally comfortable active transport route to a planned destination using heat information and tree shading (Shadeway). Here, we provide a summary of our systematic review of academic literature and applications from the Google Play and Apple App Store, to identify current knowledge about personal adaptation strategies when navigating travel in cities during high temperatures. The review identifies that there is a lack of attention regarding the use of smartphone applications to address urban thermal comfort for active transport by government and private industry. We then present the initial results of original research from three community focus groups and an online survey that elicited participants’ opinions about Shadeways in the City of Greater Bendigo (CoGB), Australia. The results clearly show the need for better management of Shadeways in CoGB. For example, 52.3% of the routes traveled by participants suffer from either no or poor levels of shading, and 53 of the shaded areas were located along routes that also experience heavy traffic, which can have an adverse effect on perceptions and actual safety. It is expected that this study will contribute to improve understanding of the methods used to identify adaptation strategies to increasingly extreme temperatures.
Vegetation in urban areas provides many essential ecosystem services. These services may be indirect, such as carbon sequestration and biological diversity, or direct, including microclimate regulation and cultural values. As the global population is becoming ever more urbanized these services will be increasingly vital to the quality of life in urban areas. Due to the combined effects of shading and evapotranspiration, trees have the potential to cool urban microclimates and mitigate urban heat, reduce thermal discomfort and help to create comfortable outdoor spaces for people. Understory vegetation in the form of shrubs and grass layers are also increasingly recognized for the positive role they play in human aesthetics and supporting biodiversity. However, in fire-prone urban landscapes there are risks associated with having denser and more complex vegetation in public open spaces. We investigated the effects of plant selection and planting arrangement on fire risk and human thermal comfort using the Forest Flammability Model and Physiological Equivalent Temperature (PET), to identify how planting arrangement can help balance the trade-offs between these risks and benefits. Our research demonstrated the importance of vertical separation of height strata and suggests that Clumped and Continuous planting arrangements are the most effective way of keeping complex vegetation in public open space to deliver the greatest human thermal comfort benefit while minimizing potential fire behaviour. This study provides an example of how existing research tools in multiple ecological fields can be combined to inform positive outcomes for people and nature in urban landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.