Tracking of Pt(II) complexes is of crucial importance toward understanding Pt interactions with cellular biomolecules. Post-treatment fluorescent labeling of functionalized Pt(II)-based agents using the bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has recently been reported as a promising approach. Here we describe an azide-functionalized Pt(II) complex, cis-[Pt(2-azidobutyl)amido-1,3-propanediamine)Cl2] (1), containing the cis geometry and difunctional reactivity of cisplatin, and present a comparative study with its previously described alkyne-functionalized congener. Single-crystal X-ray diffraction reveals a dramatic change in the solid-state arrangement with exchange of the alkyne for an azide moiety wherein 1 is dominated by a pseudo-chain of Pt-Pt dimers and antiparallel alignment of the azide substituents, in comparison with a circular arrangement supported by CH/π(C≡C) interactions in the alkyne version. In vitro studies indicate similar DNA binding and click reactivity of both congeners observed by fluorescent labeling. Interestingly, complex 1 shows in vitro enhanced click reactivity in comparison to a previously reported azide-appended Pt(II) complex. Despite their similar behavior in vitro, preliminary in cellulo HeLa studies indicate a superior imaging potential of azide-functionalized 1. Post-treatment fluorescent labeling of 1 observed by confocal fluorescence microscopy shows nuclear and intense nucleolar localization. These results demonstrate the potential of 1 in different cell line localization studies and for future isolation and purification of Pt-bound targets.
Despite the broad use of platinum-based chemotherapeutics, identification of their full range of cellular targets remains a significant challenge. In order to identify, visualize, and isolate cellular targets of Pt(II) complexes, we have modified the chemotherapeutic drug picoplatin with an azide moiety for subsequent click reactivity. The new compound picazoplatin readily binds DNA and RNA oligonucleo-tides and undergoes facile post-labeling click reactions to alkyne-fluorophore conjugates. Pt-fluorophore click reactions in ribosomal RNA purified from drug-treated S. cerevisiae demonstrate its potential for future in vivo efforts.
cis-[Pt(2-azido-1,3-propanediamine)Cl2] is a reagent for high-yield post-treatment fluorescent labelling of Pt(II) biomolecular targets using click chemistry and exhibits a bias in conformational isomers in the context of duplex DNA. Pt-protein adducts are detected using BSA as a model. Following in vivo treatment, long-lived Pt-RNA adducts are detected on ribosomal RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.