We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.
Mutations in STXBP2 do not only affect cytotoxic T lymphocytes but also cause changes in the intestinal and renal epithelium resulting in severe, osmotic diarrhea and renal proximal tubular dysfunction. These defects persist after successful treatment of hemophagocytic lymphohistocytosis by HSCT. Clinical manifestations in FHL5 patients despite successful HSCT may therefore be related to defective membrane trafficking in the gut and kidney.
SummaryIntimins, encoded by eae genes, are outer membrane proteins involved in attaching-effacing (A/E) lesion formation and host cell invasion by pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium. A series of intimins, harbouring specific mutations close to the Cterminus, were constructed using pCVD438, which encodes the eae gene from EPEC strain E2348/69. These mutant plasmids were introduced into EPEC strain CVD206 and C. rodentium strain DBS255, which both contain deletion mutations in their eae genes. CVD206, CVD206(pCVD438) and CVD206(pCVD438) derivatives were assessed for their ability to promote A/E lesion formation or invasion of HEp-2 cells and to induce A/E lesions on fresh human intestinal in vitro organ cultures (IVOC). The pathogenicity of C. rodentium DBS255 harbouring these plasmid derivatives was also studied in mice. Here, we report that intiminmediated A/E lesion formation can be segregated from intimin-mediated HEp-2 cell invasion. Moreover, adherence to IVOC, EPEC-induced microvillus elongation and colonization of the murine intestine by C. rodentium were also modulated by the modified intimins.
Enteroaggregative Escherichia coli (EAEC) strains have been shown to adhere to human intestinal tissue in an in vitro organ culture (IVOC) model, and certain strains manifest mucosal toxicity. We have recently described the EAEC plasmid-encoded toxin (Pet), a member of a specific serine protease subclass of the autotransporter proteins. When injected into rat ileal loops, Pet both elicited fluid accumulation and had cytotoxic effects on the mucosa. Furthermore, the Pet protein caused rises in short circuit current from rat jejunal tissue mounted in a Ussing chamber and rounding of intestinal epithelial cells in culture. We therefore hypothesized that the mucosal pathology induced by EAEC strains in the IVOC model was related to expression of the Pet protein. Here, we have examined the effects of EAEC strain 042 and its isogenic pet mutant in the IVOC model. 042-infected colonic explants exhibited dilation of crypt openings, increased cell rounding, development of prominent intercrypt crevices, and absence of apical mucus plugs. Colonic tissue incubated with the pet mutant exhibited significantly fewer mucosal abnormalities both subjectively and as quantitated morphometrically by measurement of crypt aperture diameter. Mucosal effects were restored upon complementation of the pet mutation intrans. Interestingly, we found that the ability of 042 to damage T84 cells was not dependent upon Pet. The data suggest that the Pet toxin is active on the human intestinal mucosa but that EAEC may have other mechanisms of eliciting mucosal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.