In 1990, an international grading system for cardiac allograft biopsies was adopted by the International Society for Heart Transplantation. This system has served the heart transplant community well, facilitating communication between transplant centers, especially with regard to patient management and research. In 2004, under the direction of the International Society for Heart and Lung Transplantation (ISHLT), a multidisciplinary review of the cardiac biopsy grading system was undertaken to address challenges and inconsistencies in its use and to address recent advances in the knowledge of antibody-mediated rejection. This article summarizes the revised consensus classification for cardiac allograft rejection. In brief, the revised (R) categories of cellular rejection are as follows: Grade 0 R--no rejection (no change from 1990); Grade 1 R--mild rejection (1990 Grades 1A, 1B and 2); Grade 2 R--moderate rejection (1990 Grade 3A); and Grade 3 R--severe rejection (1990 Grades 3B and 4). Because the histologic sub-types of Quilty A and Quilty B have never been shown to have clinical significance, the "A" and "B" designations have been eliminated. Recommendations are also made for the histologic recognition and immunohistologic investigation of acute antibody-mediated rejection (AMR) with the expectation that greater standardization of the assessment of this controversial entity will clarify its clinical significance. Technical considerations in biopsy processing are also addressed. This consensus revision of the Working Formulation was approved by the ISHLT Board of Directors in December 2004.
We conclude that (i) CVF prevents HAR, (ii) the addition of Spx + IS delays rejection, but (iii) the early deposition of antibody leads to progressive graft injury, resulting in (iv) delayed vascular rejection. Our findings indicate that the features of delayed xenograft rejection described in small animal models also occur in the pig-to-baboon model, and that rejection may occur in a complement-independent manner from the effects of antibody and/or host macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.