It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-efforts basis, based upon present expectations; and (3) these Data were prepared with existing information and are subject to change without notice.
The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant increase in the scale of manufacturing in China. Using a bottom-up model for wafer-based silicon PV, we examine both historical and future factory-location decisions from the perspective of a multinational corporation. Our model calculates the cost of PV manufacturing with process step resolution, while considering the impact of corporate financing and operations with a calculation of the minimum selling price that provides an adequate rate of return. We quantify the conditions of China's historical PV price advantage, examine if these conditions can be reproduced elsewhere, and evaluate the role of innovative technology in altering regional competitive advantage. We find that the historical price advantage of a China-based factory relative to a U.S.-based factory is not driven by country-specific advantages, but instead by scale and supply-chain development. Looking forward, we calculate that technology innovations may result in effectively equivalent minimum sustainable manufacturing prices for the two locations. In this long-run scenario, the relative share of module shipping costs, as well as other factors, may promote regionalization of module-manufacturing operations to cost-effectively address local market demand. Our findings highlight the role of innovation, importance of manufacturing scale, and opportunity for global collaboration to increase the installed capacity of PV worldwide. Broader context National energy strategies are oen driven by stakeholder perspectives on energy security, environmental priorities, and economic benets. Since the global economic slowdown of 2008, economic benets have been an increasingly important factor inuencing national policies, especially for renewable energy technologies such as solar photovoltaics (PV) that have demonstrated strong commercial growth and hold promise for substantial market opportunities. Using an industry validated bottom-up cost model, we identify the economic factors for recent changes in solar PV supply chainsthe rising prominence of China, surpassing industry growth rates in all other regions. We nd that the current advantage of a Chinese PV module factory is not related to factors intrinsic to China; but rather, it is built from economies-of-scale and related supply-chain advantages, which we argue, could be equalized. We also nd that further innovations and supply-chain developments could signicantly reduce the cost of solar energy, resulting in more widespread PV deployment and global opportunities in manufacturing. These ndings are of broad importance to policy-makers and other industry stakeholders, as they provide quantitative evidence for regions to pursue collaborations that leverage one another's asymmetric strengths for mutual benets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.