Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the "bulldozer" aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA.collective behavior | t4p | type IV pili | tfp | swarming
A family of prior distributions for covariance matrices is studied. Members of the family possess the attractive property of all standard deviation and correlation parameters being marginally noninformative for particular hyperparameter choices. Moreover, the family is quite simple and, for approximate Bayesian inference techniques such as Markov chain Monte Carlo and mean field variational Bayes, has tractability on par with the Inverse-Wishart conjugate family of prior distributions. A simulation study shows that the new prior distributions can lead to more accurate sparse covariance matrix estimation.
Conway-Maxwell-Poisson (CMP) distributions are flexible generalizations of the Poisson distribution for modelling overdispersed or underdispersed counts. The main hindrance to their wider use in practice seems to be the inability to directly model the mean of counts, making them not compatible with nor comparable to competing count regression models, such as the log-linear Poisson, negative-binomial or generalized Poisson regression models. This note illustrates how CMP distributions can be parametrized via the mean, so that simpler and more easily-interpretable mean-models can be used, such as a log-linear model. Other link functions are also available, of course. In addition to establishing attractive theoretical and asymptotic properties of the proposed model, its good finite-sample performance is exhibited through various examples and a simulation study based on real datasets. Moreover, the MATLAB routine to fit the model to data is demonstrated to be up to an order of magnitude faster than the current software to fit standard CMP models, and over two orders of magnitude faster than the recently proposed hyper-Poisson model.
Summary
The proportional likelihood ratio model introduced in Luo & Tsai (2011) is adapted to explicitly model the means of observations. This is useful for the estimation of and inference on treatment effects, particularly in designed experiments, and allows the data analyst greater control over model specification and parameter interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.