Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.
Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the "bulldozer" aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA.collective behavior | t4p | type IV pili | tfp | swarming
Pseudomonas aeruginosa evolves during chronic pulmonary infections of cystic fibrosis (CF) patients, forming pathoadapted variants that are persistent. Mucoid and rugose small-colony variants (RSCVs) are typically isolated from sputum of CF patients. These variants overproduce exopolysaccharides in the biofilm extracellular polymeric substance (EPS). Currently, changes to the biophysical properties of RSCV and mucoid biofilms due to variations in EPS are not well understood. This knowledge may reveal how lung infections resist host clearance mechanisms. Here, we used mechanical indentation and shear rheometry to analyse the viscoelasticity of RSCV and mucoid colony-biofilms compared to their isogenic parent at 2-, 4-, and 6-d. While the viscoelasticity of parental colony-biofilms underwent fluctuating temporal changes, in contrast, RSCV and mucoid colony-biofilms showed a gradual progression to more elastic-solid behaviour. Theoretical indices of mucociliary and cough clearance predict that mature 6-d parental and RSCV biofilms may show reduced cough clearance from the lung, while early mucoid biofilms may show reduced clearance by both mechanisms. We propose that viscoelasticity be considered a virulence property of biofilms.
Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis. Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.