Polyurethanes are a diverse class of polymers, with independently tunable mechanical and biodegradation properties making them a versatile platform material for biomedical implants. Previous iterations have failed to adequately embody appropriate mechanical and biological properties, particularly for vascular medicine where strength, compliance and multifaceted biocompatibility are required. We have synthesized a new polyurethane formulation with finely tuned mechanical properties, combining high strength and extensibility with a low Young's modulus. Additional cross-linking during synthesis enhanced stability and limits leaching. Under cyclic testing, hysteresis was minimal following completion of the initial cycles, indicating the robustness of the material. Building on this platform, we used plasma immersion ion implantation to activate the polymer surface and functionalized it with recombinant human tropoelastin. With tropoelastin covalently bound to the surface, human coronary endothelial cells showed improved attachment and proliferation. In the presence of heparinized whole blood, tropoelastin-coated polyurethane showed very low thrombogenicity in both static and flow conditions. Using this formulation, we synthesized robust, elastic prototype conduits which easily retained multiple sutures and were successfully implanted in a pilot rat aortic interposition model. We have thus created an elastic, strong biomaterial platform, functionalized with an important regulator of vascular biology, with the potential for further evaluation as a new synthetic graft material.
Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress-strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.