Polyurethanes are a diverse class of polymers, with independently tunable mechanical and biodegradation properties making them a versatile platform material for biomedical implants. Previous iterations have failed to adequately embody appropriate mechanical and biological properties, particularly for vascular medicine where strength, compliance and multifaceted biocompatibility are required. We have synthesized a new polyurethane formulation with finely tuned mechanical properties, combining high strength and extensibility with a low Young's modulus. Additional cross-linking during synthesis enhanced stability and limits leaching. Under cyclic testing, hysteresis was minimal following completion of the initial cycles, indicating the robustness of the material. Building on this platform, we used plasma immersion ion implantation to activate the polymer surface and functionalized it with recombinant human tropoelastin. With tropoelastin covalently bound to the surface, human coronary endothelial cells showed improved attachment and proliferation. In the presence of heparinized whole blood, tropoelastin-coated polyurethane showed very low thrombogenicity in both static and flow conditions. Using this formulation, we synthesized robust, elastic prototype conduits which easily retained multiple sutures and were successfully implanted in a pilot rat aortic interposition model. We have thus created an elastic, strong biomaterial platform, functionalized with an important regulator of vascular biology, with the potential for further evaluation as a new synthetic graft material.
Low Density Polyethylene (LDPE) films were exposed at an altitude of 40 km over a 3 day NASA stratospheric balloon mission from Alice Springs, Australia. The radiation damage, oxidation and nitration in the LDPE films exposed in stratosphere were measured using ESR, FTIR and XPS spectroscopy. The results were compared with those from samples stored on the ground and exposed in a laboratory plasma. The types of free radicals, unsaturated hydrocarbon groups, oxygen-containing and nitrogen-containing groups in LDPE film exposed in the stratosphere and at the Earth's surface are different. The radiation damage in films exposed in the stratosphere are observed in the entire film due to the penetration of high energy cosmic rays through their thickness, while the radiation damage in films exposed on the ground is caused by sunlight penetrating into only a thin surface layer. A similarly thin layer of the film is damaged by exposure to plasma due to the low energy of the plasma particles. The intensity of oxidation and nitration of LDPE films reflects the difference of atmospheric pressure on the ground and in the stratosphere. The highdensity radiation damage of the LDPE films above the ozone layer in the stratosphere is caused by primary cosmic rays as well as collision induced cosmic ray air showers, and is consistent with the measured flux of cosmic radiation. The results show, that stratospheric flights can be used to simulate the effects of space environments during interplanet space flights for the purposes of investigating the degradation of polymer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.