Translation of the Bible or any other text unavoidably involves a determination about its meaning. There have been different views of meaning from ancient times up to the present, and a particularly Enlightenment and Modernist view is that the meaning of a text amounts to whatever the original author of the text intended it to be. This article analyzes the authorial-intent view of meaning in comparison with other models of literary and legal interpretation. Texts are anchors to interpretation but are subject to individualized interpretations. It is texts that are translated, not intentions. The challenge to the translator is to negotiate the meaning of a text and try to choose the most salient and appropriate interpretation as a basis for bringing the text to a new audience through translation.
Due to climate change and associated longer and more frequent droughts, the risk of forest fires increases. To address this, the Institute of Meteorology and Water Management implemented a system for forecasting fire weather in Poland. The Fire Weather Index (FWI) system, developed in Canada, has been adapted to work with meteorological fields derived from the high-resolution (2.5 km) Weather Research and Forecasting (WRF) model. Forecasts are made with 24- and 48-h lead times. The purpose of this work is to present the validation of the implemented system. First, the results of the WRF model were validated using in situ observations from ~70 synoptic stations. Second, we used the correlation method and Eastaugh’s percentile analysis to assess the quality of the FWI index. The data covered the 2019 fire season and were analysed for the whole forest area in Poland. Based on the presented results, it can be concluded that the FWI index (calculated based on the WRF model) has a very high predictive ability of fire risk. However, the results vary by region, distance from human habitats, and size of fire.
<p>Fires negatively affect the composition and structure of fauna and flora, as well as the quality of air, soils and water. They cause economic losses and pose a risk to human life. Poland is at the forefront of European countries in terms of forest fires. Therefore, Institute of Meteorology and Water Management - National Research Institute (IMWM-NIR) implemented fire danger forecast system based on high-resolution (2.5 km) Weather Research and Forecast (WRF) model. Forecasted meteorological data are used to calculate parameters of Canadian Forest Fire Weather Index (FWI) System: Fire Weather Index (FWI), Initial Spread Index (ISI), Buildup Index (BUI), Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and Drought Code (DC). Each parameter is presented in one of the classes corresponding to the fire danger &#8211; from low to extreme. In this way, a daily 24- and 48-hour fire danger forecasts are generated for the whole area of Poland and presented on IMWM-NIR meteorological website (meteo.imgw.pl).</p><p>In this presentation we show analyses of reliability of implemented FWI system. For this purpose, data reprocessing from March to September 2019 were made. Also data on fires occurrence on forest lands: time of occurrence, characteristics and location, from the resources of the State Fire Service were collected. Finally, for the selected period, we obtained a dataset of about 8 thousand events for which we assigned values of FWI parameters. Generally, based on our analysis, correlation between number of fires and averaged value of FWI amounted over 0.8. We found out, the correlation coefficient calculated for regions differ. The correlation is higher in central and northern Poland compared to the eastern part of the country, which also correspond to the number of fires. This may be related to the different forest structure - there is a higher proportion of broadleaf forests in the east. The comparison of 24- and 48-hour forecasts showed that they have similar reliability.</p>
<p>A new urban canopy scheme for the ICON atmospheric model is presented. Increasing the resolution of atmospheric models for numerical weather prediction (NWP) or climate simulations allows, among others, for a more realistic description of the processes at the land surface. Here, one field of growing interest are the processes in urban areas. Beside their relevance for the meteorological modelling, there is a general trend in most countries that the number of people living in towns is significantly increasing. During the recent years, an urban canopy parameterization was developed for the multi-layer land surface scheme TERRA of the Consortium for Small-scale Modeling (COSMO) mesoscale atmospheric model. This parameterisation, TERRA_URB, originally developed for the climate version of COSMO and then ported to the NWP version, was shown to be able to reproduce the key urban meteorological features for different European cities. In the framework of the transition of the COSMO Consortium to the ICON model, TERRA_URB needs to be implemented in ICON. Furthermore, an updated set of urban canopy parameters needs to be provided, for describing the urban characteristics down to a mesh size of 1 km, and below. For these purposes, the COSMO Consortium organises the dedicated Priority Project CITTA&#8217;. First results are presented for TERRA_URB in the ICON limited-area model ICON-LAM for different cities of interest of the CITTA&#8217; partners. The preliminary results indicate already that urban features like the urban heat island effect are well represented. This is in agreement with the experiences with TERRA_URB in the COSMO model, both the climate as well as the NWP version.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.