We propose a new framework for processing Fringe Patterns (FP). Our novel approach builds upon the hypothesis that the denoising and normalisation of FPs can be learned by a deep neural network if enough pairs of corrupted and cleaned FPs are provided. Although similar proposals have been reported in the literature, we propose an improvement of a well-known deep neural network architecture, which produces high-quality results in terms of stability and repeatability. We test the performance of our method in various scenarios: FPs corrupted with different degrees of noise, and corrupted with different noise distributions. We compare our methodology versus other state-of-the-art methods. The experimental results (on both synthetic and real data) demonstrate the capabilities and potential of this new paradigm for processing interferograms. We expect our work would motivate more sophisticated developments in this direction.
Two steps phase shifting interferometry has been a hot topic in the recent years. We present a comparison study of 12 representative self-tunning algorithms based on two-steps phase shifting interferometry. We evaluate the performance of such algorithms by estimating the phase step of synthetic and experimental fringe patterns using 3 different normalizing processes: Gabor Filters Bank (GFB), Deep Neural Networks (DNNs) and Hilbert Huang Transform (HHT); in order to retrieve the background, the amplitude modulation and noise. We present the variants of state-of-the-art phase step estimation algorithms by using the GFB and DNNs as normalization preprocesses, as well as the use of a robust estimator such as the median to estimate the phase step. We present experimental results comparing the combinations of the normalization processes and the two steps phase shifting algorithms. Our study demonstrates that the quality of the retrieved phase from of two-step interferograms is more dependent of the normalizing process than the phase step estimation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.